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The study of game theory focuses on �games� between players which may be

anything from individuals, businesses, governments, or competing populations

of animals. Each player has a set of n �moves� {E1, E2, . . . , En} from which

they form a strategy. These are either pure strategies in which a player always

plays one move, or mixed strategies de�ned as a probability distribution over

their moves, in which players randomly decide between their moves according

to the distribution. What each player gains or loses given their move and the

moves of the other players is held as a matrix. As the example this paper will

mainly focus on, we look to Rock, Paper, Scissors(RPS). RPS is played by 2

players A and B, both of which share a moveset {Rock, Paper, Scissors}. Their
payo�s are held by the payo� matrices A for Alice and B for Bob, where

A =

 0 −1 1

1 0 −1
−1 1 0

B =

 0 −1 1

1 0 −1
−1 1 0


Note that in this case (and, in fact, in any zero-sum game between 2 play-

ers), A = −BT
. A natural and useful interpretation, of particular interest to

ecologists, is to consider the �players� as populations of one or more species and

each move Ei to represent a phenotype. Here, the frequency of Eiin a mixed

strategy is the proportion of population 1 that is type i, and Aij in payo� matrix

A holds the payo� value to a member of species 1 of type i in competition with

a type j member of population 2.

A primary focus of classical game theory is to �nd strategy sets in games

such that no player would wish to change their strategy, called Nash Equilibria,

often with the sense that these strategies are ones which players will naturally
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gravitate towards as the most rational strategies. However, this leaves unclear

how players actually arrive at these strategies, if they do so at all. It is entirely

possible that in the face of irrational play, this supposedly rational play is in

fact not optimal. To approach this issue, we develop a dynamical system to

represent the game and strategy shifts over time.

To see how players update their strategies with time, we must consider the

strategies as a vector space. Each strategy becomes a vector ~x = (x1, . . . , xn)

for player 1 and ~y = (y1, . . . , ym) where xi is the chance that x̄'s player plays

move xi. Because of this probabilistic restriction,
∑n

i=1 xi = 1,
∑m

i=1 yi = 1,

and all compenents of ~x and ~yare positive. We graph the strategies for players

1 and 2 on separate simplexes embedded in Rn and Rmrespectively, with each

pure strategy at a vertex. The cartesian product of these simplexes forms our

total strategy space. Now we can calculate the payo� to player 1 as xAyT.

Such a view allows us to analyze strategy shifts dynamically.

Dynamic Strategy Evolution: The Replicator Equa-

tions

A particularly popular and useful model is that of �replicator equations�. Here,

each player continually updates their strategies towards the highest payo� along

a �ow which naturally arises from evolutionary reasoning as in Hofbauer(1998).

As I will then show, this is a version of gradient ascent scaled to the boundaries

set by game theory.

The intuition for the replicator equations is simple in evolutionary terms. For

a given phenotype Ei with frequency xi, we measure the �evolutionary success�

as how fast the extant group of that phenotype is expanding, expressed as rate of

increase ẋi

xi
. By basic Darwinian reasoning, such success is the di�erence between

our phenotype's success and the average success of the population. The� average

succes� is the sum of the possible outcomes weighted by the probability with

which each outcome happens,
∑n

i=1

∑m
j=1 xiAijyj , which is just xAyT. Thus

we write:

ẋi = xi((AyT)i − xAyT)

for each phenotype xi, where (AyT)i is the ithelement of (AyT).

Note that
∑n

i=1 ẋi =
∑n

i=1(xAyT)i −
∑n

i=1 xixAyT = 0, so the sum total

of xiover all i is still 1, as the probabilistic interpretation demands. To look
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from a more purely mathematical perspective appropriate for single players in

addition to whole population, observe that

n∑
i=1

(AyT )i =

n∑
i=1

δ

δxi
xAyT = ~∇xxAyT

. Thus, players follow the gradient of the payo� matrix ever towards the maxi-

mum with rescaling to ensure that the strategy vector for each player does not

leave their strategy space.

Hamiltonian Dynamics of Replicator Equation

Here we show that RPS displays Hamiltonian dynamics. Following Hofbauer

(1996), we change variables to ui = log( xi

x1
)and vj = log(yi

y ) for (u,v) ∈ R. We

can reduce to a 4-dimensional space in this way because each player's strategy

space only has 2 degrees of freedom: x3 = 1−x1−x2. This coordinate transform
projects the the whole strategy space, a 4-dimensional simplex in 6-dimensional

space, down to 4-dimensional space. After performing some algebra, we obtain

u̇i =

∑m
j=1 Ãije

vj + Ãi0

1 +
∑m

j=1 e
vj

where Ãij = Aij−A0j . This transformation expresses the replicator equation

as a linear bipartite system of the form u̇ = f(v) and v̇ = g(u). Via further

manipulations, we can express the system as a Hamiltonian system

u̇ = P∇vH

v̇ = −PT∇uH

Where

H =

n∑
1

piui − log

(
1 +

n∑
1

eui

)
+

n∑
1

qivi − log

(
1 +

n∑
1

evi

)

for interior equilibrium (p, q) and the matrix P is a skew-symmetric matrix

where Pij = Ãi0 − Ãij = Ai0 +A0j −A00 −Aij . Serendipitously, this allows us

to easily extend to a case we wish to analyze later; Rock Paper Scissors where

player 1 wins ε in a tie while player 2 loses ε. In that case,
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P =


0 0 2ε 3 + ε

0 0 −3 + ε 2ε

−2ε 3− ε 0 0

−3− ε −2ε 0 0


Consequences of Hamiltonian Dynamics and Chaos

As is immediately apparent from RPS's Hamiltonian form as a linear bipartite

system, Liouville's theorem applies. Thus, the volume in the RPS state-space

( a Euclidean volume in R4under the coordinate transformation above, a less

concrete volume form otherwise) is invariant. This implies that the Nash Equi-

librium at ~x = ~y = { 13 ,
1
3 ,

1
3}is not asymptotically stable. Thus, when players

begin with any strategy pair which is not the Nash equilibrium, they never move

to the Nash equilibrium. However, the equilibrium still tells us something about

the game's payo�s. It can be shown that the time averages of the payo�s for

each player in any orbit are the same as if both players played the equilibrium.

(Hofbauer 1998)

According to the replicator equation players move along a 4-dimensional

toroidal orbit, which, projected onto a shared 2-dimensional simplex, is pictured

below
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However, when ε 6= 0, many of these torii can collapse into chaotic orbits.

According to KAM theory, many toroidal orbits remain , but for higher and

higher ε more orbits collapse. In fact, chaotic orbits �nely interweave with

the toroidal paths such that the orbits are dense in each other (Sato et. al,

2002). This chaotic behavior is shown in a hyperplanar Poincare section of the

4-dimensional simplex with ε = 0.25 over many initial conditions from Sato et.

al.
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Here, the circles rare sections of toroidal Hamiltonian orbits in 4-space while

the �snow� around and between them is where chaotic orbits cross through

the Poincare section. Indices do not correspond directly to frequencies due to

variable transformations which project the strategy space into 4 dimensions.

When ε = 0, the integrable nature of the motion implies that all Lyapunov

exponents are precisely 0. However, when ε > 0, Hamiltonian mechanics requires

only that λ2 = λ3 = 0 and that λ1 = −λ4. Numerical computation (Sato et. al)

shows that λ1is positive for many initial conditions, which shows these orbits

are in fact chaotic.

the consequences of chaotic orbits seriously a�ect predictions in game the-

oretical models. While, as stated above, the average expected payo�s for both

players are the same as if both played the Nash equilibrium, the divergences

from the equilibrium payo� along chaotic orbits are larger than the toroidal

orbits, and so a risk-averse player would prefer to avoid chaotic orbits. Fur-

thermore, the essential unpredictability of chaotic orbits means that no player

can use a prediction algorithm to gain an advantage over another player in the

game as well. Thus, chaos in such a simple game demands we exercise great

caution as to when a lack of agency may undercut entirely the predictions of

game theory.
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