- 1. Prove that the L^1 norm is a norm on \mathbb{R}^n .
- 2. (Equivalence of topologies on \mathbb{R}^n) Consider the following norms: $\|\cdot\|_2$ (Euclidean norm), $\|\cdot\|_1$, and $\|\cdot\|_{\infty}$.
 - (a) For the case of two metrics d_1 and d_2 on a space X, compare Proposition 4.7 (M13.3) and Lemma M20.2 (which may be used although the proof should be understood).
 - (b) (No write-up required.) Using the case of n = 2 as an example, show (visually!) that all of the topologies induced by the associated metrics are the same.
 - (c) Choose two of the metrics above and consider the topologies they generate on \mathbb{R}^n . Choose one of these topologies and prove that it is finer than the other.¹

Note that, by Theorem M20.3 and the full result of part (c), each of these norms² induce the same topology as the product topology on \mathbb{R}^n . From now on, we may switch between these equivalent formulations of the standard topology on \mathbb{R}^n as suits our needs.

3. (Topology on matrices.) Let $M_n(\mathbb{R})$ be the set of all $n \times n$ matrices with entries from \mathbb{R} . The goal of this problem is to understand how we can put a topology on $M_n(\mathbb{R})$ analogous to the usual topology in Euclidean space.

Define the *Hilbert–Schmidt norm* $\|\cdot\|$ on $M_n(\mathbb{R})$ by:

$$||A|| = \left(\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^{2}\right)^{1/2}$$

for $A = (a_{ij}) \in M_n(\mathbb{R})$ (so a_{ij} is the entry of A in the *i*th row and *j*th column). It is a fact that this is, indeed, a norm on $M_n(\mathbb{R})$ and this may be used without proof. The induced metric topology is the *standard topology* on $M_n(\mathbb{R})$.

- (a) Let d be the metric induced by $M_n(\mathbb{R})$. Find 3 examples of matrices in the ball $B_d(I_2, 1)$ where I_2 is the 2 × 2 identity matrix.
- (b) Prove that M_n(ℝ) is homeomorphic to ℝ^{n²}.
 Hint: By problem 2, any of the norms in that problem induce the same topology on ℝ^{n²}. Opt for one of those instead of the product topology.
- (c) Recall the determinant det : M_n(ℝ) → ℝ. Prove that det is a continuous function.
 Hint: Use part (b). To help see how, write down the determinant of a generic element of M₂(ℝ) or M₃(ℝ) and consider the previous homework.

¹The way that this problem is written should suggest that there are no wrong choices here. In fact, that *is* the case. The conclusion from this is that all three of these topologies are the same.

 $^{^{2}}$ In fact, a slightly deeper results shows that *any* norm on a finite dimensional vector space induces the same topology.