A Few Repairs

Ok, so I really made a hash of the last example in Monday's lecture. (This came from Munkres Lemma 13.4.)

Let's recap. Let $K = \{ \frac{1}{n} : n \in \mathbb{Z}_+ \}$, and let

$$\begin{split} \beta &= \{ \, (a,b) \subset \mathbf{R} : a < b \, \} \\ \beta' &= \{ \, [a,b) \subset \mathbf{R} : a < b \, \} \\ \beta'' &= \{ \, (a,b) - K \subset \mathbf{R} : a < b \, \} \cup \{ \, (a,b) \subset \mathbf{R} : a < b \, \}. \end{split}$$

Now, thanks to Jacob's altertness—and hence the proper definition of β'' —all three of β , β' , and β'' cover **R**—that is, every $x \in \mathbf{R}$ is in some element of β , β' , and β'' . We just need to verify the intersection property (aka (b)).

Observe that if $x \in (a, b) \cap (c, d)$, then

$$x \in (a', b') \subset (a, b) \cap (c, d)$$

where $a' = \max\{a, c\}$ and $b' = \min\{b, d\}$. That is the intersection of two intervals is either empty of another interval. In particular, β is a basis. With the same notation for a' and b',

$$((a,b) - K) \cap ((c,d) - K) = (a',b') - K$$
 and
 $((a,b) - K) \cap (c,d) = (a',b') - K$

provided the intersections are non-empty. It now follows easily that β'' is a basis. On the other hand, if $x \in [a, b) \cap [c, d)$, then $x \in [x, b') \subset [a, b) \cap [c, d)$ where b' is a basis.

It is immediate from our Proposition on bases, that β is a basis for the usual topology τ on **R**; that is, $\tau = \tau(\beta)$.

Let $\tau' = \tau(\beta')$ and $\tau'' = \tau(\beta'')$. Munkres calls τ' the lower limit topology and writes \mathbf{R}_{ℓ} for (\mathbf{R}, τ') . He calls τ'' the K-topology and writes \mathbf{R}_{K} for (\mathbf{R}, τ'') .

We want to prove the following.

Lemma 1. The three topologies on $\mathbf{R} - \tau$, τ' , and τ'' are distinct. Moreover $\tau \subsetneq \tau'$ and $\tau \subsetneq \tau''$. But τ' and τ'' are not comparable.

Proof. Let $U \in \tau$. Suppose $x \in U$. Then there are a < b such that $x \in (a, b) \subset U$. But then $[x, b) \subset U$. This shows that $U \in \tau'$ so that $\tau \subset \tau'$. Since $\beta \subset \beta''$, we clearly have $\tau \subset \tau''$. On the other hand $[0, 1) \in \tau'$ but is not in τ . Hence $\tau \subsetneq \tau'$. Since $0 \in (-1, 1) - K$ and no interval containing 0 lies inside (-1, 1) - K, we have $\tau \subsetneq \tau''$. But it is also clear that no basic set of the form [0, c) can be contained in (-1, 1) - K either. Thus $\tau' \subsetneq \tau''$. But $[2, 3) \notin \tau''$, so $\tau'' \subsetneq \tau'$ as well.