A topological space is perfectly normal if it is normal and every closed subset is a G_{δ} -set.

Theorem

Suppose that A and B are disjoint closed G_{δ} -subsets of a normal topological space X. Then there is a continuous function $f: X \to [0,1]$ such that $A = f^{-1}(\{0\})$ and $B = f^{-1}(\{1\})$.

A sequence (x_n) in a metric space (X, d) is called Cauchy if for all $\epsilon > 0$ there is a $N \in \mathbb{Z}_+$ such that $m, n \ge N$ implies that $d(x_n, y_m) < \epsilon$.

Example

- Convergent sequences are Cauchy.
- If a Cauchy sequence has a convergent subsequence, then it converges.
- If X is metrizable, then whether or not a sequence (x_n) in X is Cauchy can depend on the choice of metric!

We say that a metric space (X, d) is complete if every Cauchy sequence in X is convergent.

Example

- Every compact metric space is complete.
- Ger all *n* ∈ Z₊, both (Rⁿ, d) and (Rⁿ, ρ) are complete where *d* is the (usual) Euclidean metric and ρ is the square metric.

Definition

A topological space X is called completely metrizable if X admits a metric d that generates the given topology on X and such that (X, d) is complete. Note that Munkres uses the term topologically complete to mean the same thing.

A subset D of a topological space X is dense if $\overline{D} = X$.

Lemma (Exercise)

Suppose that $A \subset X$. Then $int(A) = \emptyset$ if and only if $D = X \setminus A$ is dense.

Proposition

Let X be a topological space. Then the following are equivalent.

- If U_n is open and dense in X for all $n \in \mathbf{Z}_+$, then $\bigcap_n U_n$ is dense.
- If A_n is closed with $int(A_n) = \emptyset$, then $int(\bigcup_n A_n) = \emptyset$.