Continuous Functions on R

Theorem

Suppose that $f : \mathbf{R} \to \mathbf{R}$ is any function. Then the set C of points $a \in \mathbf{R}$ where f is continuous is a G_{δ} -subset of \mathbf{R} .

Theorem

Let X be a T_1 Baire space with no isolated points. If $D \subset X$ is countable and dense, then D is not a G_{δ} -subset of X.

Example

The ruler function $f : \mathbf{R} \to \mathbf{R}$ is continuous at $a \in \mathbf{R}$ if and only if $a \in \mathcal{N} := \mathbf{R} \setminus \mathbf{Q}$.

Corollary

There is no function $f : \mathbf{R} \to \mathbf{R}$ such that f is continuous at $a \in \mathbf{R}$ if and only if $a \in \mathbf{Q}$.

Theorem

The set C([0,1]) of continuous functions $f:[0,1] \to \mathbf{R}$ is a complete metric space with respect to the metric

$$\rho(f,g) = \sup_{x \in [0,1]} |f(x) - g(x)|.$$

Remark

Convergence in $\big(C([0,1]),\rho\big)$ is the same as uniform convergence on [0,1].

Definition

If $f \in C([0,1])$, then we define the one-sided derivatives

$$D^{+}f(x) = \lim_{h \searrow 0} \frac{f(x+h) - f(x)}{h} \text{ and}$$
$$D^{-}f(x) = \lim_{h \nearrow 0} \frac{f(x+h) - f(x)}{h}$$

provided the limits exist. We say that $f'(x_0)$ exists whenever the appropriate one-sided derivatives exist and are equal when both are defined.

Differentiable at at Least One Point

Lemma

Suppose that $f \in C([0,1])$ and that $f'(x_0)$ exists for some $x_0 \in [0,1]$. Then there is a $n \in \mathbb{Z}_+$ such that

$$|f(x) - f(x_0)| \le n|x - x_0|$$
 for all $x \in [0, 1]$.

Definition

For each $n \in \mathbf{Z}_+$ let \mathcal{F}_n be the set of $f \in C([0,1])$ such that there is a $x_f \in [0,1]$ such that

$$|f(x)-f(x_f)| \leq n|x-x_f|$$
 for all $x \in [0,1]$.

Remark

Note that if $f \in C([0, 1])$ and $f'(x_0)$ exists for at least one point in [0, 1], then f is in some \mathcal{F}_n .

Lemma

Suppose that $(f_n) \subset C([0, 1])$ converges uniformly to f on [0, 1]. Then if $x_n \to x$ in [0, 1], we have $f_n(x_n) \to f(x)$.

<ロ> <四> <四> <四> <三</td>

Lemma

For each $n \in \mathbf{Z}_+$, \mathcal{F}_n is closed in C([0,1]).