Uniform metric

Definition

Let $\mathbf{R}^J = \prod_{j \in J} \mathbf{R}$. Then the uniform metric on \mathbf{R}^J is given by

$$\overline{\rho}(x,y) = \sup\{\,\overline{d}(x_j,y_j) : j \in J\,\}$$

where

$$\overline{d}(a,b) = egin{cases} |a-b| & ext{if } |a-b| < 1, ext{ and} \ 1 & ext{if } |a-b| \geq 1. \end{cases}$$

The corresponding metric topology on \mathbf{R}^{J} is called the uniform topology.

Proposition

Let τ_p , τ_u , and τ_b be, respectively, the product topology, the uniform topology, and the box topology on \mathbf{R}^J . Then

$$\tau_p \subset \tau_u \subset \tau_b.$$

Theorem

The product topology on $\mathbf{R}^{\omega} = \prod_{n \in \mathbf{Z}_+}$ is metrizable. In particular,

$$D(x,y) = \sup\left\{ \frac{\overline{d}(x_n,y_n)}{n} : n \in \mathbf{Z}_+
ight\}$$

is a metric on \mathbf{R}^{ω} inducing the product topology.

Theorem

Suppose that (X, d) and (Y, ρ) are metric spaces and $f : X \to Y$ is a function. Then f is continuous if and only if for all $x \in X$ and all $\epsilon > 0$ there is a $\delta > 0$ such that

 $d(x, y) > \delta$ implies $\rho(f(x), f(y)) < \epsilon$.

Theorem (The Sequence Lemma)

Suppose that A is a subset of a topological space X.

- If there is a sequence $(a_n) \subset A$ such that $a_n \to x$ in X, then $x \in \overline{A}$.
- If X is metrizable and x ∈ A, then there is a sequence (a_n) ⊂ A such that a_n → x.