Theorem

If A is a connected subset of topological space X and if $f : X \to Y$ is continuous, then f(A) is connected in Y.

Lemma

If X and Y are connected, then so is $X \times Y$. More generally, if X_1, \ldots, X_n are connected, then so is their Cartesian product $\prod_{k=1}^n X_k = X_1 \times \cdots \times X_n$.

Corollary (Homework based on Ex 7 in \S 23)

Suppose that X_{α} is connected for every $\alpha \in A$, then $\prod_{\alpha \in A} X_{\alpha}$ is connected.

Definition

An ordered set (X, <) has the least upper bound property if every nonempty subset A of X which is bounded above has a least upper bound called the supremum of A or sup A.

Definition

An ordered set (L, <) is called a linear continuium if

- L has the least upper bound property, and
- **9** given x < y in L there is a $z \in L$ such that x < z < y.

Theorem

Let L be a linear continuium with the order topology. Then L as well as any interval or ray in L is connected.

個 ト く ヨ ト く ヨ ト

Corollary

The real line \mathbf{R} is connected as is any interval or ray in \mathbf{R} .

Theorem (The Intermediate Value Theorem)

Suppose that X a connected topological space and that Y is an ordered space with the order topology. Suppose that $f : X \to Y$ is continuous and that $a, b \in X$ and $y \in Y$ are such that

f(a) < y < f(b).

Then there is a $c \in X$ such that

$$f(c) = y.$$

・ロ・・団・・団・・団・ つんの