Theorem

Suppose that X is metrizable. Then the following are equivalent.

- X is compact.
- **b** X is limit point compact.
- S X is sequentially compact.

Well-Ordered Sets

Definition

An ordered set (A, <) is called well-ordered if every non-empty subset $S \subset A$ has a smallest element.

Example

- **Q** Z_+ in its usual ordering.
- $\bullet \quad \mathbf{Z}_+ \times \mathbf{Z}_+ \text{ in the dictionary order.}$
- **O** Neither **Z** nor **R** is well-ordered in their usual orders.

Definition

Of A is a well-ordered set and $\alpha \in A$, then

$$S_{\alpha} = \{ x \in A : x < \alpha \}$$

is called the section of A by α .

Theorem (Lemma 10.2)

There is a well-ordered set A having a largest element Ω such that the section S_{Ω} is uncountable, but every other section S_{α} with $\alpha \neq \Omega$ is countable. We'll always equip S_{Ω} with the order topology.

Remark

Note that S_{Ω} has no largest element—if α was a largest element, then $S_{\Omega} = S_{\alpha} \cup \{ \alpha \}$ would be countable. Therefore

$$S_{\Omega} = \bigcup_{a \in S_{\Omega}} S_a = \bigcup_{a \in S_{\Omega}} (-\infty, a)$$

is an open cover of S_{Ω} in the order topology without a finite subcover. Therefore S_{Ω} is not compact.

Lemma

Every countable subset of S_{Ω} is bounded.

Lemma

 S_{Ω} has the least upper bound property.

Lemma

We will write \overline{S}_{Ω} for the set $A = S_{\Omega} \cup \{\Omega\}$. Then \overline{S}_{Ω} has the least upper bound property and hence is compact.

Non-Metric Compactness is Complicated

Lemma

If X is sequentially compact, then X is limit point compact.

Theorem

 S_{Ω} is sequentially compact (and hence limit point compact).

Corollary

Neither S_{Ω} nor \overline{S}_{Ω} is metrizable.

Corollary

In a general setting, sequential compactness does not imply compactness.

Forbidden Fruit

Remark

It is true that $X = [0, 1]^{\omega} = \prod_{n \in \mathbb{Z}_+} [0, 1]$ is compact (see Tychonoff's Theorem in §37), but not sequentially compact. So in general, compactness does not imply sequential compactness.

Remark

Note that $(n, m) \mapsto (1, n, m)$ is an order isomorphism of $\mathbb{Z}_+ \times \mathbb{Z}_+$ onto the section $S_{(2,1,1)}$ in $Z_+ \times Z_+ \times Z_+$. This is a general phenomena. If X and Y are well ordered sets, then exactly one of the following holds: X and Y are order isomorphic, or X is order isomorphic to a section of Y, or Y is order isomorphic to a segment of X.

Corollary

Every countable well-ordered set X is order isomorphic to a section of S_{Ω} .