Let A be a subset of a topological space X. We say that $x \in X$ is a limit point of A if every neighborhood of x meets $A \setminus \{x\}$. The set of limit points of A is denoted by A'.

Theorem

Of A is a subset of a topological space X then

 $\overline{A} = A \cup A'.$

Corollary

If A is closed, then $A' \subset A$.

A topological space X is called Hausdorff if distinct points have disjoint neighborhoods.

イロト イヨト イヨト イヨト

Theorem

If X is Hausdorff, then every finite subset of X is closed.

Suppose that (x_n) is a sequence in a topological space X. Then we say that (x_n) converges to $x \in X$ if given any neighborhood U of x there is a $N \in \mathbb{Z}_+$ such that $n \ge N$ implies that $x_n \in U$. Then we write $x_n \to x$ or $\lim_{n \to \infty} x_n = x$.

Remark

Alternatively, we say that (x_n) converges to x if (x_n) is eventually in every neighborhood of x.

Theorem

If X is Hausdorff and (x_n) is a sequence in X converging to both x and y, then x = y.

Suppose that X and Y are topological spaces. Then we say that a function $f: X \to Y$ is continuous if $f^{-1}(V)$ is open in X whenever V is open in Y.

Proposition

Suppose that X and Y are topological spaces and that β is a basis for the topology on Y. Then $f : X \to Y$ is continuous if and only if $f^{-1}(V)$ is open for every $V \in \beta$.

Suppose that X and Y are topological spaces and that $f : X \to Y$ is a function. We say that f is continuous at $x_0 \in X$ if given a neighborhood V of $f(x_0)$ there is a neighborhood U of x_0 such that $U \subset f^{-1}(V)$.

Theorem

If X and Y are topological spaces and $f : X \rightarrow Y$ is a function, then the following are equivalent.

- I f is continuous.
- **2** For all $A \subset X$, we have $f(\overline{A}) \subset \overline{f(A)}$.
- $f^{-1}(B)$ is closed in X whenever B is closed in Y.
- f is continuous at every $x \in X$.