- Of Midterm exam will be tomorrow (Thursday, August 1st) during our x-hour (1:20 to 2:10) with the take home due at the beginning of class on Friday.
- The exam will cover through Firday's lecture (that is up to an including Section 28).

Definition

A topological space X is called locally compact if every point in x has a neighborhood contained in a compact subspace of X.

Example

- Any compact space is locally compact.
- **2 R** and **R**^{*n*} are locally compact for all $n \in \mathbf{Z}_+$.
- **③** \mathbf{R}^{ω} is NOT locally compact in the product topology.

< @ ► < E ►

Suppose that X is Hausdorff. Then X is locally compact if and only if every point in X has a neighborhood with compact closure.

Theorem (To be Fixed)

Suppose that X is Hausdorff and locally compact. If U is a neighborhood of $x \in X$, then there is a neighborhood V of x with compact closure such that

$$x \in V \subset \overline{V} \subset U.$$

Suppose that X is locally compact and Hausdorff. Then a subspace $Y \subset X$ is locally compact if and only if Y is locally closed. In particular, both open and closed subsets of locally compact Hausdorff spaces are themselves locally compact.

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

Definition

If X is a topological space, then X has a countable basis at $x \in X$ if there is a countable collection β of neighborhoods of x such that given any neighborhood U of x there is a $V \in \beta$ such that

$x \in V \subset U$.

We say that X is first countable if every point in X has a countable basis.

Example

A metrizable space is always first countable.

Suppose that X is first countable.

- If A ⊂ X, then x ∈ A if and only if there is a sequence (x_n) ⊂ A such that x_n → x.
- ② A function $f : X \to Y$ is continuous if and only if given any sequence (x_n) in X converging to $x \in X$, then $f(x_n) \to f(x)$.

We say that a topological space X is second countable if there is a countable basis for the topology on X.

Example

R, \mathbf{R}^n , and \mathbf{R}^{ω} are all second countable.

Lemma

Every second countable space is first countable.