J-tuples

Definition

Let X and J be sets. Then a J-tuple of elements in X is a function $x: J \rightarrow X$. When thinking of x as a J-tuple, we often write x_{j} in place of $x(j)$ and even replace x with $\left(x_{j}\right)_{j \in J}$. We refer to x_{j} as the " $j^{\text {th }}$ coordinate of x.

Example

The terminology and notation come from the case $J=\{1,2, \ldots, n\}$ and $X=\mathbf{R}$. Then a J-tuple is just he usual n-tuple of real numbers.

Example

If $J=\mathbf{Z}_{+}$, then a J-tuple is just a sequence in X.

Cartesian Products

Definition

Let $\left\{X_{i}\right\}_{j \in J}$ be an indexed family of sets．Let $X=\bigcup_{j \in J} X_{j}$ ．Then the Cartesian Product

$$
\prod_{j \in=} x_{j}
$$

is the set of J－tuples $x=\left(x_{j}\right)$ such that $x_{j} \in X_{j}$ for all $j \in J$ ．

Example

If $J=\{1,2, \ldots, n\}$ ，then we write

$$
\prod_{j \in J} X_{j}=\prod_{j=1}^{n} X_{j}=X_{1} \times X_{2} \times \cdots \times X_{n}
$$

In particular， $\mathbf{R}^{n}=\prod_{j=1}^{n} \mathbf{R}$ and $A \times B=\prod_{j \in\{1,2\}} X_{j}$ where $X_{1}=A$ and $X_{2}=B$ ．

The Projection Maps

Definition

Suppose that $X=\prod_{j \in J} X_{j}$ and that $k \in J$. Then the map

$$
\pi_{k}: \prod_{j \in J} \rightarrow X_{k}
$$

given by $\pi_{k}(x)=x_{k}$ is the projection onto the $k^{\text {th }}$ factor.

Remark

If U_{k} is open in X_{k}, then $\pi_{k}^{-1}\left(U_{k}\right)=\prod U_{j}$ where $U_{j}=U_{k}$ if $j=k$, and such that $U_{j}=X_{j}$ if $j \neq k$. In particular,

$$
\rho=\left\{\pi_{j}^{-1}\left(U_{j}\right): U_{j} \text { is open in } X_{j}\right\}
$$

is a subbasis for $X=\prod_{j \in J} X_{j}$.

The Product Topology

Definition

If X_{j} is a topological space for each $j \in J$, then the product topology on $\prod_{j \in J} X_{j}$ is the topology generated by the subbasis ρ above.

Remark

The product topology is the smallest topology on $\prod X_{j}$ such that all the projection maps are continuous.

Remark

A basis for the product topology is given by sets of the form

$$
U=\prod_{j \in J} U_{j}
$$

where there is a finite set $F \subset J$ such that U_{j} is open in X_{j} for all $j \in F$ and $U_{j}=X_{j}$ if $j \notin F$.

The Box Topology

Definition

The box topology on ΠX_{j} is the topology generated by the basis consisting of sets of the form

$$
U=\prod U_{j}
$$

where U_{j} is open in X_{j} for all $j \in J$.

Useful Theorems

Theorem

Let $\prod X_{j}$ have the product topology and suppose that $f: Z \rightarrow \prod X_{j}$ is a function of the form $f(z)=\left(f_{j}(z)\right)$ for functions $f_{j}: Z \rightarrow X_{j}$. Then f is continuous if and only if each f_{j} is

continuous.

Theorem

Suppose that $A_{j} \subset X_{j}$ for each j. Then in either the box or product topology,

$$
\prod_{j \in J} \overline{A_{j}}=\overline{\prod_{j \in J} A_{j}}
$$

Metric Spaces

Definition

A metric on a set X is a function

$$
d: X \times X \rightarrow[0, \infty)
$$

such that for all $x, y, z \in X$ we have
(c) $d(x, y)=0$ if and only if $x=y$,
(1) $d(x, y)=d(y, x)$, and
(c) $d(x, z) \leq d(x, y)+d(y, z)$.

Definition

If d is a metric on $X, x \in X$, and $\epsilon>0$, then

$$
B_{d}(x, \epsilon)=\{y \in X: d(y, x)<\epsilon\}
$$

is called the ϵ-ball centered at x.

