Definition

Let (X, <) be an ordered set. Then the order topology on X is the topology generated by the basis β consisting of unions of sets of the form

- Open intervals of the form (a, b) with a < b in X.
- If X has a smallest element a₀, then we also include half-open intervals [a₀, b) with a₀ < b in X.</p>
- If X has a largest element b₀, then we also include half-open intervals of the form (a, b₀] with a < b₀.

Example

- The order topology on **R** is the usual topology.
- ${\small 2 \!\!\! O}$ The order topology on ${\small {\bf Z}}_+$ is the discrete topology.

The Product Topology

Definition

Then the product topology on the cartesian product $X \times Y$ is the topology generated by the basis of open rectangles

$$\beta = \{ U \times V \subset X \times Y : U \in \tau \text{ and } V \in \sigma \}.$$

Theorem

Let (X, τ) and (Y, σ) be topological spaces. Suppose that β is a basis for τ and γ is a basis for σ . Then

$$\gamma = \{ U \times V \subset X \times Y : U \in \beta \text{ and } V \in \gamma \}$$

イロト イヨト イヨト イヨト

is a basis for the product topology on $X \times Y$.

Example

The product topology on $\mathbf{R}^2 = \mathbf{R} \times \mathbf{R}$ is the usual topology on \mathbf{R}^2 .

The Subspace Topology

Theorem

Suppose that (X, τ) is a topological space and that $Y \subset X$. Then

 $\tau_{\mathbf{Y}} = \{ U \cap \mathbf{Y} : U \in \tau \}$

is a topology on Y called the subspace topology on Y. We say that (Y, τ_Y) is a subspace of (X, τ)

Theorem

Suppose that Y is a subspace of X. If β is a basis for the topology on X, then

 $\beta_{\mathbf{Y}} = \{ U \cap \mathbf{Y} : U \in \beta \}$

is a basis for the subspace topology on Y.

Example

The order topology on [0,1] is the subspace topology on [0,1] viewed a subspace of **R**.