
SVD

Ben Southworth

31 May 2013

Abstract

In this paper we will first introduce the singular value decomposition (SVD) of
a matrix and basic theory behind it. We will then go over the general algorithm,
along with implementations in SAGE and computational efficiency comparisons
with built in libraries. At the end we will discuss principal component analysis and
its relation with the SVD as one of many applications.

1 Introduction to SVD

The singular value decomposition (SVD) of an m× n matrix A is a factorization

A = UΣV ∗,

where U is an m×m unitary matrix, Σ an m×n rectangular diagonal matrix, and
V ∗ an n × n unitary matrix. V ∗ is the conjugate transpose of V , i.e. the (i, j)th
entry of V is the complex conjugate of the (j, i)th entry of V ∗. Note, a square
matrix A ∈ Cm×m is unitary if A∗ = A−1, and the singular values of A are the
square roots of the eigenvalues of A∗A, all of which are real and non-negative.

Figure 1: SVD of a 2× 2 matrix [9].

Since V is unitary, V ∗ = V −1, and thus we can rewrite the SVD as AV = UΣ,
which can be broken down into individual components as Avi = σiui. Using this
format it is easiest to think of the SVD of a matrix A by breaking down its action
on the unit sphere as shown in Figure 1. For the sake of simplicity, let A be some
real matrix A ∈ Rm×n, where m ≥ n. Then A maps the unit sphere S ∈ Rn to a
hyper ellipse AS ∈ Rm. The unit sphere is ”stretched” by some factors σ1, ..., σm
in some orthogonal directions u1, ..., um ∈ Rm. The vectors {σiui} are called the

1

principal semi axes of the hyper ellipse, with lengths σ1, ..., σm. If A has rank r,
then exactly r of the lengths σi will be nonzero, and if m ≥ n, at most n will be
nonzero.

We can also connect this action on the unit sphere to the fundamental theorem
of linear algebra and the four fundamental subspaces of a matrix A with rank r.
Figure 2 illustrates the idea nicely. The subspace of Rm spanned by the columns
of A is the range of A, also called the column space, and has dimension r. This is
the space mapped to by A, and an orthonormal basis for the column space makes
up the first r columns of U in our SVD. Similarly, the row space is the subspace
of Rn spanned by the rows of A and is also of dimension r. These are the vectors
that are mapped by A to the column space. The first r columns of V (or rows in
V ∗) are an orthonormal basis for the row space of A.

Figure 2: The 4 fundamental subspaces of a matrix [8].

By the fundamental theorem of linear algebra, there are two corresponding null
spaces as well, the (right) null space and left null space with dimensions m− r and
n− r, respectively. The null space of A is the set of vectors mapped to zero by A,
N(A) = {x ∈ Rn|Ax = 0}, and an orthonormal basis for N(A) makes up columns
{r+1, ...,m} of U . One important property of the null space is that it is orthogonal
to the row space. Consider some x ∈ N(A) and y in the row space of A. If y is in
the row space of A, we can also write y as a linear combination of rows of A, where
y =

∑m
i=1 aibi for some bi ∈ R and row of A, ai ∈ Rn. Recall by definition of the

null space, if x ∈ N(A), aix = 0 for i = 1, ...,m. As a linear combination of rows
of A, let y be a row vector, and let x naturally be a column vector as it is in the
null space. Then if we consider the dot product of y and x we have

yx =
(m∑

i=1

aibi

)
x

=
m∑
i=1

bi(aix)

= 0,

2

thus proving their orthogonality. The left null space of A is the set of vectors y
such that yA = 0, equivalently defined as the null space of A∗. A similar proof to
that shown for the orthogonality of the null space and row space of A will confirm
the orthogonality of the left null space and column space of A. An orthonormal
basis for the left null space of A makes up columns of {r + 1, ..., n} of V . We call
the column vectors of U and V the left singular vectors and right singular vectors,
respectively. Figure 3 puts all of this together to show the form of each matrix in
our decomposition, with the orthonormal bases for the row space, column space,
null space and left null space, along with r nonzero singular values σi along the
diagonal of Σ.

Figure 3: The 4 fundamental subspaces of a matrix.

We should note that the orthogonality of the null space and left null space with
the row space and column space, respectively, is critical to choosing the columns
of U, V in our SVD. This orthogonality allows a set consisting of an orthonormal
basis for the column space (row space) and an orthonormal basis for the left null
space (null space) to form an orthonormal basis for Rm (Rn). A unitary matrix has
several equivalent necessary conditions, and one is that an m×m matrix is unitary
if and only if its rows and columns each form an orthonormal basis for Rm. The
orthogonality previously discussed allows us to choose the columns of U, V as we
did. A nice proof on the existence and uniqueness of the SVD for any matrix A
can be seen in [9].

2 Computing the SVD

It is possible to form the computation of left and right singular vectors and singular
values of A as an eigenvalue problem, using the product A∗A. This process however
can cause a significant loss in accuracy of smaller singular values. An alternative

method that does not experience this problem is to use the cyclic matrix

(
0 A
A∗ 0

)
,

however this accuracy is augmented with a corresponding increase in computational
cost [5].

The best general method to computing the SVD can be broken down into two
phases. The first is to bidiagonalize the matrix A into an upper bidiagonal matrix,

3

A = PBQ∗, where P,Q are unitary matrices and B an upper bidiagonal matrix.
The second step is to then compute the SVD of B = XΣY ∗, Plugging this into our
formula for A gives us

A = PXΣY ∗Q∗

= (PX)Σ(QY)∗

Because the product of two unitary matrices with compatible dimensions is also
unitary, if we let U = PX and V = QY , we then have the SVD of A in the form
A = UΣV ∗.

2.1 Phase 1: Bidiagonalization

Two standard methods to bidiagonalize a matrix are through Householder trans-
formations or Lanczos recurrences. The use of Householder transformations to
bidiagonalize a matrix is an extension of the standard QR factorization algorithm
using Householder transformations. In the QR factorization, we decompose A into
A = QR, for some orthogonal matrix Q and upper triangular matrix R. The House-
holder method involves applying a set of unitary matrices Qk to the left of A to
form an upper triangular matrix R,

Qn...Q1A = R

where Qn...Q1 = Q∗, and thus A = QR. We choose each matrix Qk such that when
applied to the left of A, zeros are introduced under the diagonal in the kth column.
Figure 4 illustrates this process on a 5× 3 matrix.

Figure 4: Householder bidiagonalization of a 5× 3 matrix. [9]

We construct these unitary matrices Qk through Householder reflectors F

Qk =

(
I 0
0 F

)
,

where I is the (k− 1)× (k− 1) identity matrix, and F an (m− k+ 1)× (m− k+ 1)
unitary matrix. Let x ∈ Cm−k+1 be the entries below and including the diagonal
of the kth column of A. We then need

x =

 x1
...

xm−k+1

 F−→ Fx =

‖x‖
0
...
0

 ,

4

which can also be written as Fx = ‖x‖e1, where e1 is the (m− k + 1)-dimensional
vector e1 = (1, 0, ..., 0)T . The appropriately named reflector F will do this by
reflecting the space Cm−k+1 across the hyperplane orthogonal to v = ‖x‖e1 − x.
Trefethen defines the reflector matrix as

F = I − 2
vv∗

v∗v
,

which we will then use to apply n Householder reflections to the left of A [9].

The extension of householder transformations to bidiagonalization is called Golub-
Kahan bidiagonalization [4]. Instead of applying Householder reflectors to just the
left side of A, we alternate, applying reflectors to the left and right side of A,

A −→ U∗
n...U

∗
1AV1...Vn−2

Reflectors applied to the left introduce column zeros beneath the diagonal, and re-
flectors applied to the right introduce row zeros, starting at the two entries past the
diagonal, as shown in Figure 5 At the end of the algorithm, we have applied n reflec-
tors to the left and n−2 reflectors to the right [9], leaving A as the product of an up-
per bidiagonal matrix with a set of unitary Householder transformation matrices.

Figure 5: Householder bidiagonalization of a 5× 3 matrix. [9]

Householder.sage is a SAGE script to upper-triangularize a matrix using the QR
algorithm. Implementing the two sided householder transformations proved to be
significantly trickier problem, and so we instead switched our bidiagonalization
method to Lanczos recurrences, discussed below. The bidiagonalization script for
Lanczos recurrences can be found in Lanczos.sage.

An alternative bidiagonalization method without using Householder transforma-
tions is using Lanczos recurrences. Suppose we have the equation A = PBQ∗,
where P,Q are unitary matrices and B an upper bidiagonal matrix. We can rewrite

5

this as

B = P ∗AQ =

α1 β1

α2 β2
. . .

. . .

αn βn

 ,

where

αj = p∗jAqj

βj = p∗jAqj+1.

As discussed in [5], if we choose an arbitrary unit vector q1, the rest of the column
vectors making up P,Q are uniquely determined. Given matrix equationsAQ = PB
and A∗P = QB∗, we can equate the first k columns to yield a double recursion
algorithm as follows:

αjpj = Aqj −Bj−1pj−1

Bjqj+1 = A∗pj − αjqj ,

where αj = ‖Aqj − Bj−1pj−1‖ and βj = ‖A∗pj − αjqj‖ because the columns of
P,Q are normalized [5]. An implementation of this recurrence can be found in
Lanczos.sage.

2.2 Phase 2: Diagonalization

The second phase of computing the SVD of a matrix A is to compute the SVD
of the bidiagonal matrix B computed in phase 1. This is done by diagonalizing B
as the product of unitary matrices, which, as discussed previously, will then give
us the SVD of A. In computation, the second phase is not an analytic algorithm
however, instead iterating to some level of error convergence.

The generic algorithm to diagonalize B is applying an implicit QR algorithm to
BTB. We compute a sequence of matrices Bi, starting at B0 = B, with some shift
σ2, generally taken to be the smallest eigenvalue of the 2× 2 matrix in the bottom
right of BiB

T
i . The implicit QR factorization is then done on the shifted matrix

B)Ti Bi − σ2I = QR. We then let BT
i+1Bi+1 = RQ + σ2I, which will converge to a

diagonal matrix for large i [2].

It is worth noting there are a number of different, more specific methods for the
second phase. The one presented here works well for well-conditioned matrices, but
can fail on ill-conditioned matrices. There is an implicit zero-shift QR algorithm,
which removes the act of shifting our sequence of matrices and performs much bet-
ter on ill-conditioned matrices, albeit at a high computational cost [3]. There are
also divide and conquer algorithms to diagonalize B that are relatively efficient and
robust [1].

3 Principal Component Analysis

Many uses of the SVD can be seen in Carla Martin and Mason Porter’s ”The
extraordinary SVD” [6]. One of the most prominent applications is the close relation
of the SVD to principal component analysis (PCA). PCA is perhaps best described

6

by Jonathon Schlens as ”a simple non parametric method of extracting relevant
information from confusing data sets” [7]. Given some set of n samples of m
measurements, X ∈ Rm×n, the goal of PCA is to find a new basis as a linear
combination of the original basis of X that best re-expresses the data. In performing
a change of basis, we hope to both remove noise and extract an underlying structure
to the data. We can write this change of basis as a matrix equation

PX = Y,

where X ∈ Rm×n is our data, Y ∈ Rm×n our re-expressed data, and P ∈ Rm×m a
change of basis matrix. Let us now index the rows of P as pi, for i = 1, ...,m and
the columns of X as xi for i = 1, ..., n, and rewrite the equation as a set of vector
dot products

PX =

p1...
pm

(x1 ... xn
)

=

p1 · x1 ... p1 · xn
...

. . .
...

pm · x1 ... p · xn

= Y

We can then see that the ith column of Y is given by yi =
(
p1 · xi, ..., pm · xi

)T
,

where the jth coefficient of yi is a projection onto the jth row of P . Thus PX = Y
is a change of basis on the columns of X to the basis {p1, ..., pm}. We call these
vectors {p1, ..., pm} the principal components of X.

The next question is how do we define the best basis to re-express our data? We
are trying to rid the data of both noise and redundancy. A scale of noise is the
signal to noise ratio (SNR), given by

SNR =
σ2signal
σ2noise

,

where a low SNR implies noisy data and a high SNR >> 1 implies minimal noise.
Thus a basis to reduce noise will be found by maximizing the variance of the signal,
thereby minimizing the SNR. The other potential problem with data is redun-
dancy, which refers to measurements that give unnecessary information. A simple
example is videotaping movement along a 1-dimensional place using multiple cam-
eras. Clearly one camera is sufficient, so data supplied by additional cameras add
redundancy to our data. Redundancy is best measured by the covariance between
vectors. A high covariance implies a strong linear relationship and thus redundancy,
while a low covariance implies higher independence and low redundancy. In choos-
ing a new basis, we thus want to minimize the covariance between measurements.
If we assume zero mean for two measurements x1, x2, the formula for covariance
between them reduces to a normalized dot product,

σ2x1,x2
=

1

n− 1
x1x

T
2 .

Generalizing this to our matrix X of m measurements, we have a covariance matrix
given by

CX =
1

n− 1
XXT ,

7

where the ith diagonal entry is the variance of the ith measurement, and the (i, j)th
entry is the covariance between the ith and jth measurements. Two important
things to note are the covariance of a vector with itself is just its variance, and
CX is a symmetric m × m matrix, where CX(i, j) = CX(j, i). If you recall our
goals, it is clear that we want CX to be diagonal, removing redundancy altogether
and then maximizing the SNR in the diagonal entries. Reframing this to our
equation PX = Y , we want some orthonormal matrix P such that CY = 1

n−1Y Y
T

is diagonal. Writing CY in terms of P gives us

CY =
1

n− 1
Y Y T

=
1

n− 1
(PX)(PX)T

= P
(XXT

n− 1

)
P T

If we now note that XXT is a symmetric matrix, we can use the relevant linear
algebra theorem that a symmetric matrix is diagonalized by an orthogonal matrix
of its eigenvectors, A = EDET [8]. This tells us that we want to choose P such
that each row pi is an eigenvector of CX = 1

n−1XX
T .

With this, we can finalize the relation of the SVD and PCA. Let us define a new
matrix Y = 1

n−1X
T , and expand Y TY to see that Y TY = CX . As previously

discussed, the principal components of X are the eigenvectors of CX , and we will
now calculate these eigenvectors as the eigenvectors of Y TY . If we decompose Y TY
into its SVD, the columns of the matrix V are the eigenvectors for Y TY , and thus
the columns of V are the principal components of X.

8

References

[1] Cline, Alan, and Dhillon, Inderjit. “Computation of the Singular Value Decom-
position.” Handbook of Linear Algebra. Chapman and Hall, 2007.

[2] Deift, Percy, et al. “The bidiagonal singular value decomposition and Hamilto-
nian mechanics.” SIAM journal on numerical analysis 28.5 (1991): 1463-1516.

[3] Demmel, James, and William Kahan. “Accurate singular values of bidiagonal
matrices.” SIAM Journal on Scientific and Statistical Computing 11.5 (1990):
873-912.

[4] Golub, Gene, and William Kahan. “Calculating the singular values and pseudo-
inverse of a matrix.” Journal of the Society for Industrial & Applied Mathemat-
ics, Series B: Numerical Analysis 2.2 (1965): 205-224.

[5] Hernandez, V., et al. “Restarted Lanczos bidiagonalization for the SVD in
SLEPc.” (2007).

[6] Martin, Carla D., and Mason A. Porter. “The extraordinary SVD.” The Amer-
ican Mathematical Monthly 119.10 (2012): 838-851.

[7] Shlens, Jonathon. “A tutorial on principal component analysis.” Systems Neu-
robiology Laboratory, University of California at San Diego (2005).

[8] Strang, Gilbert. “The fundamental theorem of linear algebra.” The American
Mathematical Monthly 100.9 (1993): 848-855.

[9] Trefethen, Lloyd N., and David Bau III. Numerical linear algebra. No. 50. So-
ciety for Industrial and Applied Mathematics, 1997.

9

