Math 56 Compu \& Expt Math, Spring 2013: Topics Weeks 1-3 (Midterm 1)

1 Week 1

Relative error

$\operatorname{Big} O$, little o. Know definitions, be able to test if one func is O or oon another, as some parameter goes large or small.

Algebraic convergence, order. Know how to bound tail of algebraic series by integral.
Exponential convergence, rate. How to bound tail by pulling out a geometric series. Thm that rate is asymptotically (dist from center to eval pt)/(dist from center to singularity)

How to choose good axes for a plot so data spread and linear, interpret slope.
Definition of superexponential convergence.
Basic complex arithmetic, magnitude-phase notation.

2 Week 2

Taylor's theorem with correct remainder term, using it to bound err. eg using to prove super-exp conv for $\exp (\mathrm{x})$

Newton's iteration. Definition of quadratic convergence (ie $\varepsilon_{n+1} / \varepsilon_{n}^{2} \leq C$), sketch of proof that Newton's is quad conv. Newton's for computing sqrt. Bisection alg from HW.

Set of floating point numbers, their gaps, error due to rounding ie $f \ell(x)$. Defn of $\varepsilon_{\text {mach }}$. Rules of floating point arithmetic (rounding combined with $+-\times /$)

Summation: sum in order small magnitude to large, and why.
Catastrophic cancellation, spotting it, and using math to rewrite the formula to avoid it.
Relative condition number of a problem $\kappa(x)$, defn, how to compute.
Finite differencing to approximate derivatives. One-sided, centered, and 3-pt stencil. How to get their orders and estimating CC error associated with finite-precision evaluation of the function. Derive the approximate optimal choice of h by equating the two sources of error.

3 Week 3

Backwards stability: definition, concept, how to test for it applying rules of floating point to simple functions $f(x)$ or $f\left(x_{1}, x_{2}\right)$, ie one or two inputs.

Bkw Stab Thm: a bkw stab algorithm's relative err bounded by $\kappa(x) O\left(\varepsilon_{\text {mach }}\right)$, apply it.
Stability: definition. (Advanced: be able to test an algorithm for stability.)
Roots of unity in complex plane, eg solving $z^{n}=c$ for n integer, $c>0$ real.
2-norm of a vector, and (induced) norm of a matrix $\|A\|$, definition, understanding in terms of largest growth factor (longest semi-axis of ellipsoid produced when A acts on unit sphere). Formula from HW3: $\|A\|=\sqrt{\lambda_{\max }\left(A^{T} A\right)}$.

Condition number of a matrix $\kappa(A)=\|A\| \cdot\left\|A^{-1}\right\|$, and that it is worst-case bound of κ for the linear system $A \mathbf{x}=\mathbf{b}$, with respect to input data $\mathbf{b} .{ }^{1}$

4 Practise questions

Also see worksheets, homeworks, and Quiz 1. More to follow.

1. Prove if $\log x=O(x)$ as $x \rightarrow \infty$? As $x \rightarrow 0$?
2. The matrix A turns the vector $(3,4)$ into the vector $(5,12)$. Use this to give a bound on $\|A\|$ (upper, lower?) Also use it to give a bound on $\left\|A^{-1}\right\|$ (upper, lower?)
3. Use Taylor's theorem to bound the error of the 3 -point stencil finite difference approximation to $f^{\prime \prime}(x)$ with spacing h, in exact arithmetic. State the convergence type and order/rate. If relative errors in evaluating f are $O\left(\varepsilon_{\text {mach }}\right)$ what is an optimal choice for h ? (Ignore constants size $O(1)$.)
4. Compute the norm of matrix $A=\left[\begin{array}{ll}1.001 & 1 \\ 1 & 1\end{array}\right]$. How many digits of accuracy do you expect in worst-case for linear system involving A ? (An exact computation of κ is messy; feel free to make approximations).
5. Bindel-Goodman Ex. 4.6.8.
6. From X-hr: a) Prove if $2 N^{3}+N^{2}=O\left(N^{2}\right)$ as $N \rightarrow \infty$ b) Prove if $\sin x \log x=o(x)$ as $x \rightarrow \infty$ c) Prove if $10 \sin x=O(x)$ as $x \rightarrow 0 \mathrm{~d}$) Prove if $10 \tan x=O(x)$ as $x \rightarrow 0$.
7. Write a Newton iteration to solve $x^{3}-x=1$. What function of the error creates a linear graph when plotted vs iteration number n ?
8. Fixing any $x>0$ and $r>0$, show that the Taylor series for e^{x} about 0 has error $O\left(r^{n}\right)$. State the type of convergence this implies.
9. Estimate the relative error introduced when a floating point machine evaluates $f(x)=1+x$.
10. What is a rigorous bound on the error of the unsymmetric finite-difference approx $f^{\prime}(x) \approx \frac{f(x+2 h)-f(x-h)}{3 h}$? Use exact arithmetic (ignore rounding error). Your bound should hold for all $h>0$ and may involve properties of f. Then write it in big-O notation.
11. Now accounting for floating point error (assume f evaluated to $\varepsilon_{\text {mach }}$), what is the optimal h to get the best accuracy in the previous question? What roughly is this accuracy?

[^0]12. Write all solutions to $z^{3}=8 i$ in the form $r e^{i \theta}$.

5 Some practise question answers

1. l'Hôpital's rule both times. Ans: Yes, no.
2. $\|A\| \geq 13 / 5$. $\left\|A^{-1}\right\| \geq 5 / 13$.
3. abs err upper bnd $\left(h^{2} / 12\right) \cdot \max _{q \in(x-h, x+h)}\left|f^{\prime \prime \prime \prime}(q)\right|=O\left(h^{2}\right)$ ie 2nd-order algebraic convergence. Evaluation error causes $O\left(\varepsilon_{\text {mach }} / h^{2}\right)$ error in answer. Balancing this against $O\left(h^{2}\right)$ gives $h=\varepsilon_{\text {mach }}^{1 / 2}$.
4. norm is about $\sqrt{2}$ (I didn't do exactly). $\kappa(A)$ is about 10^{3}, so roughly expect 13 digits in solution.
5.
6. they all are.
7. $x_{n+1}=x_{n}-\frac{x_{n}^{3}-x_{n}-1}{3 x_{n}^{2}-1}$. Quadratic convergence, so $\log \left(\log 1 / \varepsilon_{n}\right)$ vs n linear.
8. Taylor theorem, then $\lim _{n \rightarrow \infty}(x / r)^{n} / n!=0$, so is bounded by a const for all sufficiently large n. Super-exponential convergence.
9. $\frac{2|x|+1}{x+1} \varepsilon_{\text {mach }}$
10. absolute error is $O(h)$.
11. $h=O\left(\varepsilon_{\text {mach }}^{1 / 2}\right), 8$ digits.
12. geom gives $2 e^{i \theta}$ where $\theta=\pi / 6,5 \pi / 6,9 \pi / 6$ since each angle when tripled gives $\pi / 2$

[^0]: ${ }^{1}$ for that matter, A too, but we didn't do that

