Math 56 Compu \& Expt Math, Spring 2013: Topics Weeks 4-6 (Midterm 2)

1 Week 4

Definition of $\|f\|, 2$-norm of a function on an interval, definition of orthogonality.
Definition of complex Fourier series on $(0,2 \pi)$. Modes $\left\{e^{-i m x}\right\}$ are orthogonal. Projection formula to extract coefficients given f. Real-valued functions have conjugate symmetric coefficients.

Parseval's relation $\|f\|^{2}=2 \pi \sum_{m \in \mathbb{Z}}\left|\hat{f}_{m}\right|^{2}$.
Best approximation property (in L^{2}-norm on $(0,2 \pi)$) of coefficients \hat{f}_{m} for a truncated Fourier series.
DFT for signals length N : formula for \tilde{f}_{m} for $m=0, \ldots, N-1$. DFT as a matrix F (and its later formula in terms of ω), or linear map from \mathbb{C}^{N} to itself.

Derivation of DFT from N-node equispaced quadrature approx to projection formula. f_{j} are "normalized samples" $\frac{1}{N} f(2 \pi j / N)$

2 Week 5

Magnitude of complex number z is $\sqrt{z^{*} z}$. Conjugate transpose of vector or matrix. Generalization of 2-norm to complex vectors $\|\mathbf{f}\|=\sqrt{\mathbf{f}^{*} \mathbf{f}}$.

Sum lemma for powers of root of unity $\omega=e^{2 \pi i / N}$.
Inversion formula for DFT (flip sign of power of ω, overall $1 / N$ factor)
Unitarity of $\frac{1}{\sqrt{N}} F$, equivalence to inversion formula. Consequences: length preservation under action of $\frac{1}{\sqrt{N}} F$, i.e. discrete Parseval's theorem.

Aliasing: DFT coeffs in terms of true Fourier coeffs: $\tilde{f}_{m}=\cdots+\hat{f}_{m-N}+\hat{f}_{m}+\hat{f}_{m+N}+\cdots$ Interpretation that DFT coeffs from 0 to $N / 2-1$ approximate same Fourier coeffs, while DFT coeffs $N / 2+1$ to $N-1$ approximate Fourier coeffs $-N / 2+1$ to -1 .

Nyquist sampling theorem: $N / 2$-band-limited function exactly reconstructed from N samples, by its Fourier series using the DFT coefficients. "Two points per period."

Cooley-Tukey FFT. Basic idea (don't need to memorize twiddles and formulae), its complexity.

3 Week 6

Trigonometric polynomial interpolation $=N / 2$-truncated Fourier series with coefficients estimated via DFT of N samples. Error in max norm $\leq 2 \sum_{|n|>=N / 2}\left|\hat{f}_{n}\right|$.

Smoother f have faster-decaying coefficients. $f \in C^{k}$ means $\hat{f}_{m}=O\left(|m|^{-k}\right)$. Definition, examples of, and how to test for super-algebraic convergence.

Interpreting Fourier index m as physical frequency m / T where T is total sample time.
Convolution theorem: $\widehat{f * g}=\hat{f} \hat{g}$. Application to audio and image processing. Basic deconvolution and the issue of noise amplification if certain \hat{g}_{m} coeffs close to zero.

Periodic (cyclic) vs acyclic convolution, zero-padding so that the former computes the latter.
Basics of arbitrary-precision (integer only) operations in some base b.
Strassen's fast multiply using convolution via FFT, complexity vs schoolbook multiply.
Newton iteration for reciprocal, what the point of it is.
Euler-Machin formulae for π (not the obscure ones, but how to derive the one with $1 / 2$ and $1 / 3$), convergence rate of Taylor series of $\tan ^{-1}$. Complexity is at least $O\left(N^{2}\right)$ for N digits.

Existence of Brent-Salamin iteration for π (not the whole formula!). You should know: what the arithmeticgeometric mean iteration is, quadratic convergence.

4 Practise questions

1. Compute the sum of squared magnitudes of the Fourier coefficients of the periodized function $f(x)=$ $1+x$ on $(0,2 \pi)$.
2. Prove that if $f(x)$ is real-valued, then its Fourier coeffs obey the symmetry $\hat{f}_{n}=\hat{f}_{-n}^{*}$.
3. Find the acyclic convolution of $\left[\begin{array}{ll}1 & 3\end{array} 4\right]$ and [12]. What length arrays are needed to compute it periodically?
4. Prove that a function with Fourier series $\hat{f}_{n}=O\left(|n|^{-5}\right)$ has a best N-term trigonometric polynomial interpolant whose max error converges at least as fast as $O\left(N^{-4}\right)$.
5. What is the best approximation to the periodic function $f(x)=x$ on $(0,2 \pi)$ in the 2-norm sense, over all functions of the form $a e^{-i x}+b+c e^{i x}$?
6. Write down the $N=2$ DFT matrix. Explain where it appears in the FFT algorithm.
7. Show how the Fourier series coefficients of f^{\prime} relate to those of f.
8. Find an unbounded function f that has finite 2 -norm on $(0,2 \pi)$ [tricky]
9. if you sampled $f(x)=e^{i m x}$ for $m=17$ on a regular 2π-periodic grid of size $N=10$, what would the DFT of this sample vertor be?
10. Consider $f(x)=\sin (7 x)+\cos (9 x)$. How many samples on a regular grid in $[0,2 \pi)$ are sufficient to reconstruct f exactly from its Fourier series?
11. Derive the Newton iteration for reciprocal and explain why important.
12. Prove that $F^{*} F=N I$ where F is the DFT matrix. What is consequence for inverting the DFT?
13. Give as many theorems/results as you can whose proof relies on the sum lemma for the N th principal root of unity, and state each one.

5 Some practise question answers

1. Use Parseval! (don't compute the coeffs directly)
2. Use projection formula.
3. [147108] I think. $N \geq 5$.
4. In lecture $125 / 7 / 13$ we proved the max trig interp error is $\leq 2 \sum_{|n| \geq N / 2}\left|\hat{f}_{n}\right|$. Bounding the sum from $N / 2$ upwards by the integral, as in the algebraic tails of lecture 1, we have error $O\left(N^{-4}\right)$.
5. a, b, c are just the Fourier coeffs of the given f, byt the best approximation property (which you proved, using orthogonality).
6. $[11 ; 1-1]$. Appears at the lowest recursion level in FFT.
7. mult by $i m$. From taking deriv inside integral.
8. $f(x)=1 / x^{\gamma}$ for any $0<\gamma<1 / 2$ will do. The spike is still in L^{2}.
9. Aliasing formula says $\tilde{f}_{7}=1$ and $\tilde{f}_{j}=0$ for $j \neq 7$. Ie the vector $[0000000100]^{T}$.
10. Nyquist says $N=20$ sufficient. (Actually $N=19$ enough but we've tended to assume N even. I'd grade either correct.)
11. See lecture. Important since enables division to be done using just a few multiplies, which are fast.
12. Write using ω and use sum lemma. $F^{-1}=(1 / N) F^{*}$ which is nearly same as DFT itself.
13. Inversion formula for DFT, unitarity of $\frac{1}{\sqrt{N}} F, F^{2}$ is N times a permutation matrix, aliasing formula, Nyquist sampling theorem, convolution theorem.
