Math 56 Compu \& Expt Math, Spring 2013: Quiz 2

in X-hr 5/8/13, 35 mins, just pencil and paper

1. (a) Compute the Fourier series coefficients \hat{f}_{m} for

$$
f(x)= \begin{cases}1, & 0 \leq x<\pi \\ 0, & \pi \leq x<2 \pi\end{cases}
$$

Your answer shouldn't involve any exponentials.
(b) Compute the sum of the squared magnitudes of the Fourier coefficients [Hint: don't use (a)].
(c) Is it possible that there is a set of complex numbers $\left\{d_{m}\right\}_{|m|<10}$ such that $\left\|\sum_{|m|<10} d_{m} e^{i m x}-f(x)\right\|$ is smaller than $\left\|\sum_{|m|<10} \hat{f}_{m} e^{i m x}-f(x)\right\|$?
2. What interpolant function is produced if $N=4$ point trigonometric polynomial interpolation is carried out on the function $e^{i 7 x}$, on the usual interval $(0,2 \pi)$?
[BONUS] How many sample points are needed so that the previous function is interpolated exactly?
3. A function f has Fourier coefficients bounded by $\hat{f}_{m} \leq r^{|m|}$ for some $r<1$. As $N \rightarrow \infty$, what type of convergence do you expect in the error of the m th Fourier mode \hat{f}_{m} when it is approximated by \tilde{f}_{m}, i.e. via the DFT of N samples?

Derive a rigorous upper bound on this error (you may assume N is sufficiently big):
4. Compute the result when the vector $\left[\begin{array}{ll}1 & 3\end{array}\right]$ is acyclically convolved with the vector $[321]$.
5. Roughly how many times faster would you expect Strassen's algorithm to multiply two numbers of length 10^{6} digits to run than the standard long multiplication algorithm? (Explain.)

