Math 56 Compu \& Expt Math, Spring 2014: Quiz 2

in X-hr 5/7/14, 35 mins, just pencil and paper

1. (a) Compute the periodic convolution of $[1,1,2]$ with $[1,0,-1]$.
(b) To what length should these vectors be zero-padded so that their periodic convolution correctly computes the acyclic one?
2. Write down the middle row of the $N=3$ DFT matrix (if you use symbols, define them).
3. (a) Say the function $f(x)=e^{-3 i x}$ is sampled on a regular grid of size $N=8$. What DFT coefficient vector \tilde{f} would result?
(b) What function results when trigonometric polynomial interpolation on this same grid is used to reconstruct f from the DFT coefficients you just computed? Comment.
4. A function has Fourier series decaying as $\hat{f}_{n}=O\left(1 /|n|^{3}\right)$. It is sampled on a regular N-point grid and the DFT taken. Prove an optimal big- O bound on the decay vs N of $\left|\tilde{f}_{0}-\hat{f}_{0}\right|$, ie the error in the approximated average value.
[BONUS: prove a big- O bound on the interpolation error]
5. Let f and g be length- N signal vectors. What is $\tilde{f} * \tilde{g}$ in terms of f and g ? Prove it. [Hint: this is a kind of inverted convolution theorem.]
