Math 56 Compu \& Expt Math, Spring 2014: Homework 3

due 10am Thursday April 17th

1. Here you learn how to "roll your own" finite difference formulae. Let's say you have access to f at only $x, x+h$, and $x+2 h$, and want a 2 nd-order accurate approximation for $f^{\prime}(x)$. Note that this is at the leftmost point of the three; e.g. at the extreme end of a grid of values.
(a) We want $f^{\prime}(x) \approx a f(x)+b f(x+h)+c f(x+2 h)$. Our goal is to solve for the coefficients a, b, c, by setting up a 3 -by- 3 linear system for them, as follows. Expand the right-hand side via Taylor series about x (you don't need the rigorous remainder term). Since you want this to hold for all functions, you may extract the coefficients in front of $f(x)$ to give one equation, the coefficients of $f^{\prime}(x)$ to give another, and $f^{\prime \prime}(x)$ for the third.
(b) Solve the system either by hand or computer, hence write your new finite difference formula. How do you know the solution is unique?
(c) Give a rigorous upper bound on the error of this formula (in exact arithmetic, i.e. ignore rounding).
2. Stability.
(a) Show whether subtraction $x_{1}-x_{2}$ is backwards stable (with respect to the two input data) under the rules of floating point.
(b) Cosine, like anything else done by machine, cannot be more accurate than a relative error of $\varepsilon_{\text {mach }}$ in its output (ie "forward error"). Explain if a machine implementation of cos could be backwards stable near $x=0$? Near $\pi / 2$?
3. Here's a new formula for matrix 2-norm:

$$
\|A\|=\sqrt{\lambda_{\max }\left(A^{T} A\right)}, \quad \text { where } \lambda_{\max }\left(A^{T} A\right) \text { is the largest eigenvalue of the matrix } A^{T} A
$$

(a) Let $A=\left[\begin{array}{ll}1 & -1 \\ 2 & 2\end{array}\right]$. Use the new formula to compute by hand $\|A\|$. How does it compare to the size of the largest eigenvalue of A ? (for which you can use eig)
(b) Use this to compute the matrix condition number $\kappa(A)$. Is it well-conditioned?
(c) Take 100 points $\mathbf{x} \in \mathbb{R}^{2}$ equi-spaced on the unit circle, and plot them, and $A \mathbf{x}$ for each. What geometric property does $\kappa(A)$ measure of the ellipse produced?
4. Download the two 100×100 matrices A1 and A2 from the HW page, and use textread to read them into Matlab (you will need to reshape them).
(a) Compare their matrix 2-norms and condition numbers. What worst-case relative errors do you expect for solving linear systems with matrix A1? With A2? (Use our backward stability theorem, and assume standard double precision.)
(b) Let's focus on $A=\mathrm{A} 1$, and load in the RHS $\mathbf{b}=\mathrm{bvec}$ from the HW page. Solve $A \mathbf{x}=\mathbf{b}$. Then perturb \mathbf{b} by a random vector of norm $\varepsilon_{\text {mach }}$ to get $\tilde{\mathbf{b}}$ (this emulates rounding error applied to the RHS), and solve again $A \tilde{\mathbf{x}}=\tilde{\mathbf{b}}$. What relative norm change $\|\tilde{\mathbf{x}}-\mathbf{x}\| /\|\mathbf{x}\|$ results? Does this match your prediction from (a)?
(c) Repeat (b) except using the RHS $\mathbf{c}=\mathrm{cvec}$ from the HW page. Surprising? Is it consistent with (a)? Repeat for random unit-norm RHS vectors-do they behave more like \mathbf{b} or like \mathbf{c} ?

BONUS Explain the different behaviors [hint: $\|\mathbf{x}\|$], deducing how the directions of \mathbf{b} and \mathbf{c} relate to long and short axes of the ellipse of the image of the unit sphere under A.
(d) Given $A \in \mathbb{R}^{M \times P}$ and $B \in \mathbb{R}^{P \times N}$, prove a bound on $\|A B\|$ in terms of the norms of the individual matrices. [Hint: HW2 6(c).]
5. (a) [Trefethen and Bau, Ex. 13.3] On the same axis, plot $p(x)=(x-2)^{9}$ around its root two ways. First plot it by evaluating $p(x)$ via its factored form, then plot it via its expanded form $p(x)=x^{9}-18 x^{8}+144 x^{7}-672 x^{6}+2016 x^{5}-4032 x^{4}+5376 x^{3}-4608 x^{2}+2304 x-512$. Evaluate it at the points $x=1.920,1.921,1.922, \ldots, 2.08$. Explain the discrepancy.
(b) Compute the roots of $q(x)=x^{2}-\frac{100000001}{10000} x+1$ using the quadratic formula (in Matlab). Notice that $q(x)=(x-10000)\left(x-\frac{1}{10000}\right)$. What is the relative error of the computed roots? Explain why one root is good to only 9 digits of accuracy. Can you find a way to get this root to close to machine accuracy using only the input coefficients a, b and c and the other root?

