
Math 56 Compu & Expt Math, Spring 2014: Homework 3 Debrief

April 21, 2014

Please study this, and all the debriefings. I consider them part of the required reading for the course. You

will learn a lot, especially if you redo the HW you lost points on.

1. 3+3+2 = 8 pts

(a) The 3 rows of the linear system are the conditions that: eliminates the coefficient of f(x), equates
the coefficient of f ′(x) to unity, and eliminates the coefficient of f ′′(x). The “stencil” is solved to
be [−3 4 − 1]/2h. See eg Max.

(b) It’s best to test your formula to check it, e.g. like this:

f=@(x)sin(x); fp=@(x)cos(x); h=1e-5; x=1; (-3*f(x)+4*f(x+h)-f(x+2*h))/2/h - fp(x)

This gives error of about 3e-11. Note I chose around the best h = O(ε
1/3
mach). Pawan did this with

a nice log-log convergence plot covering all h.

(c) Taylor’s theorem with bounds on the f ′′′(q) terms. Most of you had problems staying rigorous
here, forgetting the absolute value signs. It was ok if you presented it in O(h2) form if you showed
why the bound involving a sum of two f ′′′ values tends to a constant (basically, you need f ′′′

continuous).

2. 3+4 = 7 pts.

(a) This was as in lecture (there we did x1 + x2).

(b) This is tricky (good practise understanding the concept) and comes out backwards from what you
first might expect from conditioning. Intuitively: εmach relative error in cosx near x = 0 requires
a large change in input x to account for it, because cos is “flat” there, ie cos(ε) ≈ 1− ε2/2. But
near x = π/2, relative error in cos can easily be accounted for by εmach relative change in x.

It was also good if you used a model ˜cos(x) = cos(x(1 + ε1))(1 + ε2), showing cos cannot even be
relatively accurate around π/2 (precisely because κ → ∞); but it still is BS, as eg Max and Aron
explain.

3. 2+3+3 = 8 pts

(a) The eigvals of A are complex conjugate pair (typical of mostly rotation matrices) of equal mag-
nitude, 2, which must be less than ‖A‖ (can you prove this? Pawan did).

(b) You may notice a shortcut that the sqrt of the smallest eigenvalue of ATA tells you the reciprocal
of ‖A−1‖. This is because 1/λmin(A

TA) = 1/λmin(AA
T ) = λmax((AA

T )−1) = λmax((A
−1)TA−1).

The middle step comes since inverting a matrix inverts its eigenvalues.

Thus κ(A) is the sqrt of ratio of largest to smallest eigenvalue of ATA.

(c) See anyone’s picture: the ellipse longest semi-axis is ‖A‖, and shortest is 1/‖A−1‖ (why? max
growth under A−1 must be min growth under A), so κ(A) is the ratio of major to minor axes, as
James explains. Michael showed that the unit circle rotates as it becomes the ellipse.

4. 3+3+3+3 = 12 pts. The point of this question is really that κ(A) controls (via the Backwards Stability
Theorem) only the worst-case errors, not always even the typical error.

(a) Shows matrices with same norm may have wildly different κ(A). In fact I chose A1 to have singular
values 10.^(-(0:99)/7) which makes the ratio of largest to smallest 1.39× 1014.
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(b) Here bvec was chosen to be unit magnitude, in the direction of A1’s largest ellipse semi-axis
(growth output direction). However, perturbations of b are amplified by the reciprocal of the
smallest growth factor of A, which was the reciprocal of the tiny 10−14. Thus relative errors are
huge. Consistent with theorem.

(c) Isn’t it fascinating that now the relative error due to random perturbations of b is only around
10−14, and that moreover this is typical of random RHS vectors? See Pawan for verbal explanation,
and Matthew for picture. Note this doens’t contradict the bounds, but is just surprisingly mall.

The random case is subtle: a random RHS vector b has A−1
b very large, O(‖A−1‖), so relative

errors in x are small even though the absolute errors are large O(10−2).

BONUS See discussion above, and draw yourself a sphere mapping under A to a very elongated ellipse.
The clue is that x is size 1 in (b) (so that bvec aligns with output ellipse semi-major axis), but
the largest possible size 1.39× 1014 in (c) (so that cvec aligns with semi-minor axis).

Exactly the same issue comes up in Midterm 1, 2013, bonus for #4, explained in the solutions.

To understand better a random RHS vector, say d, it falls at random angle on a sphere, so that
x = A−1

d typically lies some fraction out along the longest semiaxis of A−1, so is of typical size
‖A−1‖. This is like the case of c. See Matthew’s nice pictures!

However, if instead it were the x that were chosen randomly, and used to generate d = Ax, then
the linear system solve generically would give behavior as in (b), because the growth factor of
such an x is only O(1).

(d) See eg Eli or James proof. Note despite appearances, Cauchy-Schwartz is not relevant here.

5. 5+4 = 9 pts. [Dan’s question]

(a) Everyone made the correct plot and attributed the discrepancy to some form of round-off error.
Many of you incorrectly attributed the discrepancy to the number of floating point operations
that occurred in each method. This argument doesn’t make sense. For instance, one could not
argue that computing 9 via 3× 3 and 1 + 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1 should lead to larger error
in the second case because more floating point operations took place. The source of the error is
(as usual) catastrophic cancellation. For a nice explanation see Max.

(b) Almost everyone saw the remedy here. One interesting thing observed by Michael and Max is
that scaling the coefficients by the larger root and then applying the quadratic formula produced
the right answer. Can anyone explain this? (+1 if you are able to...)


