Math 56 Compu & Expt Math, Spring 2014: Homework 4

due 10am Thursday April 24th

Exploring beautiful properties and applications of things Fourier. A bit shorter to let you recover from midterm.

- 1. Fourier series theory. As in lecture, let $\|\cdot\|$ be the L_2 -norm on $(0, 2\pi)$.
 - (a) Find a *unit-norm* function orthogonal to f(x) = x on $0 \le x < 2\pi$. [Hint: do what you'd do in vector-land, eg pick some simple new function and project away its f component].
 - (b) Combine the Fourier series for the 2π -periodic function defined by f(x) = x for $0 \le x < 2\pi$ that we computed on the worksheet with Parseval's relation to evaluate $\sum_{m=1}^{\infty} m^{-2}$
 - (c) Compute the Fourier series for the 2π -periodic function defined by $f(x) = x^2$ in $-\pi \le x < \pi$. [Hint: shift the domain of integration to a convenient one.] Comment on how \hat{f}_m decays for this continuous (but not C^1) function compared to the discontinuous function in (b).
 - (d) Take a general f written as a Fourier series, and take the derivative of both sides¹. What then is the *m*th Fourier coefficient of f'? Prove that if |f'| is bounded, $|\hat{f}_m| = O(1/|m|)$, or better.
 - (e) Use the previous idea to prove a bound on the decay of Fourier coefficients when f has k bounded derivatives. What bound follows if $f \in C^{\infty}$ (arbitrarily smooth)? Can you give this a name?
- 2. Getting to know your DFT. Use numerical exploration followed by proof (each proof is very quick):
 - (a) Produce a color image of the real part of the DFT matrix F for N = 256. Explain one of the *curves* seen in the image.
 - (b) What is F^2 ? [careful: matrix product, also don't forget the 0-indexing]. What does F^2 do to a vector? (this should be very simple!) Now, for general N, prove your claim [Hint: use ω]
 - (c) What then is F^4 ? Prove this.
 - (d) What are the eigenvalues of F? Use your previous result to prove this.
 - (e) What is the condition number of F? Prove this using a result from lecture.
- 3. The power of trigonometric interpolation, i.e. using just a few samples of a periodic function to reconstruct the function *everywhere*. (Applications to modeling data, etc.)
 - (a) Let's interpolate $f(x) = e^{\sin x}$. For N = 40, by using the 1/N-weighted samples at the nodes $x_j = 2\pi j/N, j = 0, ..., N-1$, and fft to do the DFT, find \tilde{f}_m . Plot their magnitudes on a log vertical scale vs m = 0, ..., N-1. Relate to #1(e). By what |m| have the coefficients decayed to $\varepsilon_{\text{mach}}$ times the largest? (This is the effective band-limit of the function at this tolerance.)
 - (b) Using \tilde{f}_m as good approximations to the true Fourier coefficients in -N/2 < m < N/2, plot the "intepolant" given by this truncated Fourier series, on the fine grid 0:1e-3:2*pi. Overlay the samples $Nf_j = f(x_j)$ as blobs. [Hint: Remember the negative *m*'s are wrapped into the upper half of the DFT output. Debug until the interpolant passes through the samples]
 - (c) By looping over the above for different N, make a labeled semi-log plot of the maximum error (taken over the fine grid) between the interpolant and f, vs N, for even N between 2 and 40. At what N is convergence to $\varepsilon_{\text{mach}}$ reached? (Pretty amazing, eh?) Relate to (a).

¹You may assume that you can pass the derivative through the sum.

- 4. Let's prove that, amongst all trigonometric polynomials of degree at most N/2, the N/2-truncated Fourier series for f is the *best approximation* to f in the $L_2(0, 2\pi)$ norm.
 - (a) Let g be a general trig. poly. which can be written $g = \sum_{|n| \le N/2} (\hat{f}_n + c_n) e^{inx}$ for some coefficient "deviations" c_n . Recall $f = \sum_{n=-\infty}^{\infty} \hat{f}_n e^{inx}$. Write the squared L_2 -norm of the error which is the difference of g and f:

$$||\text{error}||^{2} = ||f - g||^{2}$$
$$= \left\| \sum_{|n| > N/2} \hat{f}_{n} e^{inx} - \sum_{|n| \le N/2} c_{n} e^{inx} \right\|^{2}.$$

- (b) Using the definition of the norm, expand this expression for $||\text{error}||^2$ (you should obtain four terms, two of which will vanish). Whatever you do, do not multiply any of the big sums out. Can you use this expanded form to bound $||\text{error}||^2$ below by $\left|\left|\sum_{|n|>N/2} \hat{f}_n e^{inx}\right|\right|^2$?
- (c) What does this say about how small the error can get? From this lower bound conclude that the error is minimized precisely when each $c_n = 0$, ie when g is the truncated Fourier series of f.
- 5. A quickie on run-times. Consider the "matvec" problem computing $\mathbf{y} = A\mathbf{x}$ for A an n-by-n matrix. Write a little code using random A and \mathbf{x} for n = 4000, which measures the runtime of Matlab's native $\mathbf{A} * \mathbf{x}$, and your own naive double loop to compute the same thing. Express your answers in "flops" (flop per sec), and give the ratio. Marvel at how fast the built-in library is.