Math 56 Compu \& Expt Math, Spring 2014: Homework 4

due 10am Thursday April 24th

Exploring beautiful properties and applications of things Fourier. A bit shorter to let you recover from midterm.

1. Fourier series theory. As in lecture, let $\|\cdot\|$ be the L_{2}-norm on $(0,2 \pi)$.
(a) Find a unit-norm function orthogonal to $f(x)=x$ on $0 \leq x<2 \pi$. [Hint: do what you'd do in vector-land, eg pick some simple new function and project away its f component].
(b) Combine the Fourier series for the 2π-periodic function defined by $f(x)=x$ for $0 \leq x<2 \pi$ that we computed on the worksheet with Parseval's relation to evaluate $\sum_{m=1}^{\infty} m^{-2}$
(c) Compute the Fourier series for the 2π-periodic function defined by $f(x)=x^{2}$ in $-\pi \leq x<\pi$. [Hint: shift the domain of integration to a convenient one.] Comment on how \hat{f}_{m} decays for this continuous (but not C^{1}) function compared to the discontinuous function in (b).
(d) Take a general f written as a Fourier series, and take the derivative of both sides ${ }^{1}$. What then is the m th Fourier coefficient of f^{\prime} ? Prove that if $\left|f^{\prime}\right|$ is bounded, $\left|\hat{f}_{m}\right|=O(1 /|m|)$, or better.
(e) Use the previous idea to prove a bound on the decay of Fourier coefficients when f has k bounded derivatives. What bound follows if $f \in C^{\infty}$ (arbitrarily smooth)? Can you give this a name?
2. Getting to know your DFT. Use numerical exploration followed by proof (each proof is very quick):
(a) Produce a color image of the real part of the DFT matrix F for $N=256$. Explain one of the curves seen in the image.
(b) What is F^{2} ? [careful: matrix product, also don't forget the 0-indexing]. What does F^{2} do to a vector? (this should be very simple!) Now, for general N, prove your claim [Hint: use ω]
(c) What then is F^{4} ? Prove this.
(d) What are the eigenvalues of F ? Use your previous result to prove this.
(e) What is the condition number of F ? Prove this using a result from lecture.
3. The power of trigonometric interpolation, i.e. using just a few samples of a periodic function to reconstruct the function everywhere. (Applications to modeling data, etc.)
(a) Let's interpolate $f(x)=e^{\sin x}$. For $N=40$, by using the $1 / N$-weighted samples at the nodes $x_{j}=2 \pi j / N, j=0, \ldots, N-1$, and fft to do the DFT, find \tilde{f}_{m}. Plot their magnitudes on a log vertical scale vs $m=0, \ldots, N-1$. Relate to $\# 1(\mathrm{e})$. By what $|m|$ have the coefficients decayed to $\varepsilon_{\text {mach }}$ times the largest? (This is the effective band-limit of the function at this tolerance.)
(b) Using \tilde{f}_{m} as good approximations to the true Fourier coefficients in $-N / 2<m<N / 2$, plot the "intepolant" given by this truncated Fourier series, on the fine grid $0: 1 \mathrm{e}-3: 2 * \mathrm{pi}$. Overlay the samples $N f_{j}=f\left(x_{j}\right)$ as blobs. [Hint: Remember the negative m 's are wrapped into the upper half of the DFT output. Debug until the interpolant passes through the samples]
(c) By looping over the above for different N, make a labeled semi-log plot of the maximum error (taken over the fine grid) between the interpolant and f, vs N, for even N between 2 and 40. At what N is convergence to $\varepsilon_{\text {mach }}$ reached? (Pretty amazing, eh?) Relate to (a).

[^0]4. Let's prove that, amongst all trigonometric polynomials of degree at most $N / 2$, the $N / 2$-truncated Fourier series for f is the best approximation to f in the $L_{2}(0,2 \pi)$ norm.
(a) Let g be a general trig. poly. which can be written $g=\sum_{|n| \leq N / 2}\left(\hat{f}_{n}+c_{n}\right) e^{i n x}$ for some coefficient "deviations" c_{n}. Recall $f=\sum_{n=-\infty}^{\infty} \hat{f}_{n} e^{i n x}$. Write the squared L_{2}-norm of the error which is the difference of g and f :
\[

$$
\begin{aligned}
\| \text { error } \|^{2} & =\|f-g\|^{2} \\
& =\left\|\sum_{|n|>N / 2} \hat{f}_{n} e^{i n x}-\sum_{|n| \leq N / 2} c_{n} e^{i n x}\right\|^{2} .
\end{aligned}
$$
\]

(b) Using the definition of the norm, expand this expression for $\|$ error $\|^{2}$ (you should obtain four terms, two of which will vanish). Whatever you do, do not multiply any of the big sums out. Can you use this expanded form to bound $\|$ error $\|^{2}$ below by $\left\|\sum_{|n|>N / 2} \hat{f}_{n} e^{i n x}\right\|^{2}$?
(c) What does this say about how small the error can get? From this lower bound conclude that the error is minimized precisely when each $c_{n}=0$, ie when g is the truncated Fourier series of f.
5. A quickie on run-times. Consider the "matvec" problem computing $\mathbf{y}=A \mathbf{x}$ for A an n-by- n matrix. Write a little code using random A and \mathbf{x} for $n=4000$, which measures the runtime of Matlab's native $\mathrm{A} * \mathrm{x}$, and your own naive double loop to compute the same thing. Express your answers in "flops" (flop per sec), and give the ratio. Marvel at how fast the built-in library is.

[^0]: ${ }^{1}$ You may assume that you can pass the derivative through the sum.

