
Math 56 Compu & Expt Math, Spring 2014: Homework 6

due 10am Thursday May 8th

Options for python/SAGE setup: 1) install python and the mpmath and gmpy packages, or 2) install
SAGE, or 3) work “in the cloud” by creating a notebook account at sage.dartmouth.edu

This lets you do arbitrary precision; for now you use only the four basic arithmetic operations (although
of course they have many more available).

For mpmath usage see: http://mpmath.googlecode.com/svn/trunk/doc/build/basics.html

1. Fast multiplication, and I mean fast.

(a) Write a Matlab function for Strassen’s fast multiplication of arbitrary-precision integers in base
10, with an accompanying driver/test code. Test that the output is a vector of integers in the
range 0 to 9. You may use the built-in FFT. [Hint: this is pretty quick if you adapt my code
for addition of integers. Make sure to do something to the output of the convolution so that the
carrying works reliably!]

(b) Use your code to compute the ridiculously big number 22
22

(note the top number is the decimal
number 22). Taking 1 and doubling it 222 times is impractical—instead devise a much faster
scheme. How many decimal digits does this number have?! Print the last 10 digits. Dial them
into a phone.1 How long does the calculation take? Estimate (roughly, ie within a factor of two)
how long it would take using naive arbitrary-precision multiplication at 109 flop/sec. [Hint: if x
is a base-10 vector, fprintf(’%d’,x) is a useful way to display]

BONUS Make conjectures about the last couple of decimal digits of 22
j

for j = 2, 3, . . . and prove them.

2. Fast division.

(a) In python (or SAGE) make a function x = fastrecip(z,tol,xguess) which implements the
Newton method for the reciprocal of z, with initial guess xguess, stopping at relative tolerance
tol. This being python, you can have the test driver and the function in the same file. Note
xguess needs to be reasonably close to the answer (how near?)

(b) Import mpmath and set working precision to 1000 decimal digits. Compute 1/97 using your above
routine (don’t use any division!). What is the repetition period of its decimal expansion? Hints:

from mpmath import *

z = mpf(’97’) # the arb-precision representation of 97

(c) Assuming constant effort per flop2 in the FFT, deduce the complexity in big-O notation for your
fast reciprocal of an N -digit number.

(d) The wikipedia page http://en.wikipedia.org/wiki/Division_algorithm in the sectionNewton–

Raphson division, in the paragraph starting “From a computation point of view. . . ” claims
that xn+1 = xn(2 − zxn) is (much) less accurate than the mathematically equivalent xn+1 =
xn + xn(1 − zxn). Evaluate this claim critically by using your skills in forward error analysis
(rules of floating point), for just a single iteration. Ignore the initial rounding step, and you may
assume that xn is near its final (converged) value.

1only joking.
2This is not strictly true, since as N grows, more floating-point accuracy is needed in the FFT so that it rounds to the

correct integers; see Crandall–Pomerance book Sec 9.5.

1

3. Algorithms for digits of π. Please work in python/SAGE/mpmath/gmpy and make use of all basic
arbitrary-precision arithmetic and sqrt.

(a) Make a function y = atantaylor(x,n) which sums the n-term Taylor series about the origin (i.e.
Maclaurin series) to approximate y = tan−1 x, at whatever the current working precision is. Test
against mpmath’s atan to check. [Hint: make sure all constants are multi-precision, e.g. mpf(’0’)]

(b) Use the above to evaluate any of the Machin–Euler type formulae for π to 10000 digits. Give the
last 10 of those digits, state your convergence rate, how many terms n you used, and how many
seconds it took.

Python tips: print str(x)[-10:] for printing, and the following for timing some chunk of code,

import time

t = time.time()

... (do something) ...

print time.time()-t ’secs’

(c) Consider Gauss’ arithmetic-geometric mean iteration that lies at the heart of the Brent–Salamin
algorithm for π:

xn+1 = (xn + yn)/2

yn+1 =
√
xnyn

Prove that it is quadratically convergent to something. [Hints: bound |xn+1 − yn+1| in terms of
its previous value. Play with the difference of two squares x2

n+1 − y2
n+1.]

(d) Code up Brent–Salamin using mpmath for all arithmetic including the square-root (to make your
life easier). [Hint: debug at a “low” precision of only 100 digits, while printing 2x2

n
/αn each

iteration.]

How many times faster is it for N = 104 digits than in (b)? Quote the 10 digits of π starting at
the millionth (since the last few digits in your answer will be wrong, you’ll need to go a few digits
beyond what you need).

