
Math 56 Compu & Expt Math, Spring 2014: HW6 Debriefing

1. [Dan] 5+4 = 9 pts

(a) You just computed a number with over one million digits in a second or two! The joy (and utility!)
of FFTs.

A crucial step is to round the real-valued result from the FFT to integers before the carrying is
done, otherwise when the test of whether to carry is done, eg 9.9999999 is treated as 9 not as 10.
See Michael’s solution for a nice implementation.

(b) For the time estimate of the naive method (mult by 2, repeat 222 times), each mult is O(D)
not O(D logD) since it’s mult by a small O(1) number, where D = number of digits in answer.
Overall is O(D2) = 244 ≈ 1013 flops, about half an hour of computer run time.

BONUS See Eli’s solution for proof of the periodicity of the last two digits (and also a nice use of strong
induction).

2. 4+2+2+3 = 11 pts. Some of the early points for getting into python.

(a) As several found, if the answer is x, initial guesses must be in (0, 2x) otherwise the iteration blows
up to infinity. Pawan proves this.

(b) The repeating string is 96 long:

010309278350515463917525773195876288659793814432989690721649484536082474226804123711340206185567

Hanh explains this in terms of Fermat’s Little Theorem. Also see

http://en.wikipedia.org/wiki/Repeating_decimal

(c) O(N log2 N), see eg John.

(d) As you found, the errors hardly differ; both are of order εmach. I get that the first way has 3εmach

relative error and the second way 2εmach. None of you quite got this second case, although you
all got similar O(εmach). There is certainly no difference where one is O(εmach) but the other

O(ε
1/2
mach), as wikipedia suggests. Here wikipedia is wrong! (Please, someone correct it; bring it up

on discussion page first.)

3. 3+4+2+4 = 13 pts.

Throughout this question it was important to check convergence to the required accuracy! One way to
guarantee this is a while loop that only stops when the answer doesn’t change to the required precision.
Another (harder) is to precompute the number of terms using a convergence rate or estimate.

(a) The definition of the number of “terms used” is a bit ambiguous, since it could mean “what is
the highest poiwer n of x used in the Taylor series?” By that definition, as Kunyi calculates, if
tan−1 1/5 is the largest number to approximate by a Taylor series, around n = 14500 is needed.
But this involves only n/2 nonzero terms, i.e. around 7300 “terms.” Either definition I treated as
correct.

Speed: if you compute the power y = x2k+1 from scratch in each term, it will be slow. It’s much

faster to precompute z = x2 and y = x then update y = zy each time around the loop. Those of
you coming to office hours (eg Eli) learned this.

(b) As many of you discovered, online tools allow you to check digits of pi, or, better, sage or
python/mpmath can do it efficiently via mp.dps = 10000; print str(pi)[-10:] which prints

1



digits 9991 to 10000. Note the python array indexing (equivalent to (end-9:end) in Matlab). We
believe mpmath uses Brent–Salamin. If you rounded the 10000th digit from 7 to 8, this was fine.

Careful with defining modules with names like pi, etc. This overwrites the constant pi that
mpmath has!

(c) Difference of two squares; review of quadratic convergence proofs. Hanh shows that since the
iterations xn, yn always lie between the original values, you can use min(x0, y0) to bound the
const. Proving the convergence of αn would be extra; see Salamin’s original 1976 paper.

(d) You all found Brent–Salamin around 102 to 104 times faster than Taylor series even at N = 104

digits. Imagine how much faster it is at N = 106. Your algorithms were close to mpmath’s
in speed for evaluating π, ie one million digits in a couple of seconds! See eg Aron or Jon for
the digits. If you started at 999999th or 999998th that was fine (remember python arrays are
0-indexed)


