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1 Ordinary Differential Equations

An Ordinary Differential Equation is an equation of the form

dX(t)

dt
= f(t,X(t)), t ∈ (0, T ),

X(0) = X0.
(1.1)

We have existence and uniqueness of the solution when f(t, x) is continuous and Lips-
chitz with respect to its second variable, i.e. there exists a constant C independent of
t, x, y such that

|f(t, x)− f(t, y)| ≤ C|x− y|. (1.2)

If the constant is independent of time for t > 0, we can even take T = +∞. Here X
and f(t,X(t)) are vectors in Rn for n ∈ N and | · | is any norm in Rn.

Remark 1.1 Throughout the text, we use the symbol “C” to denote an arbitrary
constant. The “value” of C may change at every instance. For example, if u(t) is a
function of t bounded by 2, we will write

C|u(t)| ≤ C, (1.3)

even if the two constants “C” on the left- and right-hand sides of the inequality may be
different. When the value “2” is important, we will replace the above right-hand side
by 2C. In our convention however, 2C is just another constant “C”.

Higher-order differential equations can always been put in the form (1.1), which is
quite general. For instance the famous harmonic oscillator is the solution to

x′′ + ω2x = 0, ω2 =
k

m
, (1.4)

with given initial conditions x(0) and x′(0) and can be recast as

d

dt

(
X1

X2

)
(t) =

(
0 1

−ω2 0

) (
X1

X2

)
(t),

(
X1

X2

)
(0) =

(
x(0)

x′(0)

)
. (1.5)

Exercise 1.1 Show that the implied function f in (1.5) is Lipschitz.

The Lipschitz condition is quite important to obtain uniqueness of the solution. Take
for instance the case n = 1 and the function x(t) = t2. We easily obtain that

x′(t) = 2
√

x(t) t ∈ (0, +∞), x(0) = 0.

However, the solution x̃(t) ≡ 0 satisfies the same equation, which implies non-uniqueness
of the solution. This remark is important in practice: when an equation admits several
solutions, any sound numerical discretization is likely to pick one of them, but not nec-
essarily the solution one is interested in.

Exercise 1.2 Show that the function f(t) above is not Lipschitz.
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How do we discretize (1.1)? There are two key ingredients in the derivation of a
numerical scheme: first to remember the definition of a derivative

df

dt
(t) = lim

h→0

f(t + h)− f(t)

h
= lim

h→0

f(t)− f(t− h)

h
= lim

h→0

f(t + h)− f(t− h)

2h
,

and second (which is quite related) to remember Taylor expansions to approximate a
function in the vicinity of a given point:

f(t + h) = f(t) + hf ′(t) +
h2

2
f ′′(t) + . . . +

hn

n!
f (n)(t) +

hn+1

(n + 1)!
f (n+1)(t + s), (1.6)

for 0 ≤ s ≤ t assuming the function f is sufficiently regular.
With this in mind, let us fix some ∆t > 0, which corresponds to the size of the

interval between successive points where we try to approximate the solution of (1.1).
We then approximate the derivative by

dX

dt
(t) ≈ X(t + ∆t)−X(t)

∆t
. (1.7)

It remains to approximate the right-hand side in (1.1). Since X(t) is supposed to be
known by the time we are interested in calculating X(t + ∆t), we can choose f(t,X(t))
for the right-hand side. This gives us the so-called explicit Euler scheme

X(t + ∆t)−X(t)

∆t
= f(t,X(t)). (1.8)

Let us denote by Tn = n∆t for 0 ≤ n ≤ N such that N∆t = T . We can recast (1.8) as

Xn+1 = Xn + ∆tf(n∆t,Xn), X0 = X(0). (1.9)

This is a fully discretized equation that can be solved on the computer since f(t, x) is
known.

Another choice for the right-hand side in (1.1) is to choose f(t + ∆t,X(t + ∆t)).
This gives us the implicit Euler scheme

Xn+1 = Xn + ∆tf((n + 1)∆t,Xn+1), X0 = X(0). (1.10)

Notice that this scheme necessitates to solve an equation at every step, namely to find
the inverse of the function x 7→ x− f(n∆t, x). However we will see that this scheme is
more stable than its explicit relative in many practical situations and is therefore often
a better choice.

Exercise 1.3 Work out the explicit and implicit schemes in the case f(t, x) = λx for
some real number λ ∈ R. Write explicitly Xn for both schemes and compare with the
exact solution X(n∆t). Show that in the stable case (λ < 0), the explicit scheme can
become unstable and that the implicit scheme cannot. Comment.

We now need to justify that the schemes we have considered are good approximations
of the exact solution and understand how good (or bad) our approximation is. This
requires to analyze the behavior of Xn as ∆t→ 0, or equivalently the number of points
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N to discretize a fixed interval of time (0, T ) tends to infinity. In many problems, the
strategy to do so is the following. First we need to assume that the exact problem
(1.1) is properly posed, i.e. roughly speaking has good stability properties: when one
changes the initial conditions a little, one expects the solution not to change too much
in the future. A second ingredient is to show that the scheme is stable, i.e. that our
solution Xn remains bounded independently of n and ∆t. The third ingredient is to
show that our scheme is consistent with the equation (1.1), i.e. that locally it is a good
approximation of the real equation.

Let us introduce the solution function g(t,X) = g(t,X; ∆T ) defined by

g(t,X) = X(t + ∆T ), (1.11)

where
dX

dt
(t + τ) = f(t + τ,X(t + τ)), 0 ≤ τ ≤ ∆t

X(t) = X.
(1.12)

This is nothing but the function that maps a solution of the ODE at time t to the
solution at time t + ∆t.

Similarly we introduce the approximate solution function g∆t(t,X) for t = n∆t by

Xn+1 = g∆t(n∆t,Xn) for 0 ≤ n ≤ N − 1. (1.13)

For instance, for the explicit Euler scheme, we have

g∆t(n∆t,Xn) = Xn + ∆tf(n∆t,Xn). (1.14)

For the implicit Euler scheme, we have

g∆t(n∆t,Xn) = (x−∆tf((n + 1)∆t, x))−1(Xn),

assuming that this inverse function is well-defined. Because the explicit scheme is much
simpler to analyze, we assume that (1.14) holds from now on.

That the equation is properly posed (a.k.a. well-posed) in the sense of Hadamard
means that

|g(t,X)− g(t, Y )| ≤ (1 + C∆t)|X − Y |, (1.15)

where the constant C is independent of t, X and Y . The meaning of this inequality is
the following: we do not want the difference X(t + ∆t) − Y (t + ∆t) to be more than
(1 + C∆t) times what it was at time t (i.e. |X − Y | = |X(t) − Y (t)|) during the time
interval ∆t.

We then have to prove that our scheme is stable, that is to say

|Xn| ≤ C(1 + |X0|), (1.16)

where C is independent of X0 and 0 ≤ n ≤ N . Notice from the Lipschitz property of f
(with x = x and y = 0) and from (1.14) that

|Xn+1| = |g∆t(n∆t,Xn)| ≤ (1 + C∆t)|Xn|+ C∆t,
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where C is a constant. This implies by induction that

|Xn| ≤ (1 + C∆t)n|X0|+
n∑

k=0

(1 + C∆t)kC∆t ≤ (1 + C∆t)N(N∆tC + |X0|).

for 1 ≤ n ≤ N . Now N∆t = T and

(1 +
CT

N
)N ≤ eCT ,

which is bounded independently of ∆t. This implies the stability of the explicit Euler
scheme.

We then prove that the scheme is consistent and obtain the local error of discretiza-
tion. In our case, it consists of showing that

|g(n∆t,X)− g∆t(n∆t,X)| ≤ C∆tm+1(1 + |X|), (1.17)

for some positive m, the order of the scheme. Notice that this is a local estimate.
Assuming that we know the initial condition at time n∆t, we want to make sure that
the exact and approximate solutions at time (n + 1)∆t are separated by an amount
at most of order ∆t2. Such a result is usually obtained by using Taylor expansions.
Let us consider the explicit Euler scheme and assume that the solution X(t) of the
ODE is sufficiently smooth so that the solution with initial condition at n∆t given by
X = X(n∆t) satisfies

X((n + 1)∆t) = X(n∆t) + ∆tẊ(n∆t) +
∆t2

2
Ẍ(n∆t + s), (1.18)

for some 0 ≤ s ≤ ∆t, where |Ẍ(n∆t+ s)| ≤ C(1+ |X|). Notice that the above property
is a regularity property of the equation, not of the discretization. We prove convergence
of the explicit Euler scheme only when the above regularity conditions are met. These
are sufficient conditions (though not necessary ones) to obtain convergence and can be
shown rigorously when the function f(t, x) is of class C1 for instance. This implies that

X((n + 1)∆t) = g(n∆t,X(n∆t))

= X(N∆t) + ∆tf(n∆t,X(n∆t)) +
∆t2

2
Ẍ(n∆t + s)

= g∆t(n∆t,X(n∆t)) +
∆t2

2
Ẍ(n∆t + s).

This implies (1.17) and the consistency of the scheme with m = 1 (the Euler explicit
scheme is first-order). Another way of interpreting the above result is as follows: the
exact solution X((n + 1)∆t) locally solves the discretized equation (whose solution is
g∆t(n∆t,X(n∆t)) at time (n + 1)∆t) up to a small term, here of order ∆t2.

Exercise 1.4 Consider the harmonic oscillator (1.5). Work out the functions g and
g∆ for the explicit and implicit Euler schemes. Show that (1.15) is satisfied, that both
schemes are stable (i.e. (1.16) is satisfied) and that both schemes are consistent and of
order m = 1 (i.e. (1.17) is satisfied with m = 1).
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Once we have well-posedness of the exact equation as well as stability and consistency
of the scheme (for a scheme of order m), we obtain convergence as follows. We have

|X((n + 1)∆t)−Xn+1| = |g(n∆t,X(n∆t))− g∆(n∆t,Xn)|
≤ |g(n∆t,X(n∆t))− g(n∆t,Xn)|+ |g(n∆t,Xn)− g∆t(n∆t,Xn)|
≤ (1 + C∆t)|X(n∆t)−Xn|+ C∆tm+1(1 + |Xn|)
≤ (1 + C∆t)|X(n∆t)−Xn|+ C∆tm+1.

The fist line is the definition of the operators. The second line uses the triangle inequality

|X + Y | ≤ |X|+ |Y |, (1.19)

which holds for every norm by definition. The third line uses the well-posedness of the
ODE and the consistency of the scheme. The last line uses the stability of the scheme.
Recall that C is here the notation for a constant that may change every time the symbol
is used.

Let us denote the error between the exact solution and the discretized solution by

εn = |X(n∆t)−Xn|. (1.20)

The previous calculations have shown that for a scheme of order m, we have

εn+1 ≤ C∆tm+1 + (1 + C∆t)εn.

Since ε0 = 0, we easily deduce from the above relation (for instance by induction) that

εn ≤ C∆tm+1

n∑
k=0

(1 + C∆t)k ≤ C∆tm+1n,

since (1 + C∆t)k ≤ C uniformly for 0 ≤ k ≤ N . We deduce from the above relation
that

εn ≤ C∆tm,

since n ≤ N = T∆t−1 This shows that the explicit Euler scheme is of order m = 1:
for all intermediate time steps n∆t, the error between X(n∆t) and Xn is bounded by a
constant time ∆t. Obviously, as ∆t goes to 0, the discretized solution converges to the
exact one.

Exercise 1.5 Program in Matlab the explicit and implicit Euler schemes for the har-
monic oscillator (1.5). Find numerically the order of convergence of both schemes.

Higher-Order schemes. We have seen that the Euler scheme is first order accurate.
For problems that need to be solved over long intervals of time, this might not be
accurate enough. The obvious solution is to create a more accurate discretization. Here
is one way of constructing a second-order scheme. To simplify the presentation we
assume that X ∈ R, i.e. we consider a scalar equation.
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We first realize that m in (1.17) has to be 2 instead of 1. We also realize that the
local approximation to the exact solution must be compatible to the right order with
the Taylor expansion (1.18), which we push one step further to get

X((n + 1)∆t) = X(n∆t) + ∆tẊ(n∆t) +
∆t2

2
Ẍ(n∆t) +

∆t3

6

...
X(n∆t + s) (1.21)

for some 0 ≤ s ≤ ∆t. Now from the derivation of the first-order scheme, we know that
what we need is an approximation such that

X((n + 1)∆t) = g
(2)
∆t (n∆t,X) + O(∆t3).

An obvious choice is then to choose

g
(2)
∆t (n∆t,X) = X(n∆t) + ∆tẊ(n∆t) +

∆t2

2
Ẍ(n∆t).

This is however not explicit since Ẋ and Ẍ are not known yet (only the initial condition

X = X(n∆t) is known when we want to construct g
(2)
∆t (n∆t,X)). However, as previously,

we can use the equation that X(t) satisfies and get that

Ẋ(n∆t) = f(n∆t,X)

Ẍ(n∆t) =
∂f

∂t
(n∆t,X) +

∂f

∂x
(n∆t,X)f(n∆t,X),

by applying the chain rule to (1.1) at t = n∆t. Assuming that we know how to differ-
entiate the function f , we can then obtain the second-order scheme by defining

g
(2)
∆t (n∆t,X) = X + ∆tf(n∆t,X)

+
∆t2

2

(∂f

∂t
(n∆t,X) +

∂f

∂x
(n∆t,X)f(n∆t,X)

)
.

(1.22)

Clearly by construction, this scheme is consistent and second-order accurate. The regu-
larity that we now need from the exact equation (1.1) is that |

...
X(n∆t+s)| ≤ C(1+ |X|).

We shall again assume that our equation is nice enough so that the above constraint
holds (this can be shown when the function f(t, x) is of class C2 for instance).

Exercise 1.6 It remains to show that our scheme g
(2)
∆t (n∆t,X) is stable. This is left as

an exercise. Hint: show that |g(2)
∆t (n∆t,X)| ≤ (1 + C∆t))|X| + C∆t for some constant

C independent of 1 ≤ n ≤ N and X.

Exercise 1.7 Work out a second-order scheme for the harmonic oscillator (1.5) and
show that all the above constraints are satisfied.

Exercise 1.8 Implement in Matlab the second-order scheme derived in the previous
exercise. Show the order of convergence numerically and compare the solutions with
the first-order scheme. Comment.
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Runge-Kutta methods. The main drawback of the previous second-order scheme is
that it requires to know derivatives of f . This is undesirable is practice. However, the
derivatives of f can also be approximated by finite differences of the form (1.7). This is
the basis for the Runge-Kutta methods.

Exercise 1.9 Show that the following schemes are second-order:

g
(2)
∆t (n∆t,X) = X + ∆tf

(
n∆t +

∆t

2
, X +

∆t

2
f(n∆t,X)

)
g

(2)
∆t (n∆t,X) = X +

∆t

2

[
f(n∆t,X) + f

(
(n + 1)∆t,X + ∆tf(n∆t,X)

)]
g

(2)
∆t (n∆t,X) = X +

∆t

4

[
f(n∆t,X) + 3f

(
(n +

2

3
)∆t,X +

2∆t

3
f(n∆t,X)

)]
.

These schemes are called Midpoint method, Modified Euler method, and Heun’s Method,
respectively.

Exercise 1.10 Implement in Matlab the Midpoint method of the preceding exercise to
solve the harmonic oscillator problem (1.5). Compare with previous discretizations.

All the methods we have seen so far are one-step methods, in the sense that Xn+1 only
depends on Xn. Multi-step methods are generalizations where Xn+1 depends on Xn−k

for k = 0, · · · , m with m ∈ N. Classical multi-step methods are the Adams-Bashforth
and Adams-Moulton methods. The second- and fourth-order Adams Bashforth methods
are given by

Xn+1 = Xn +
∆t

2
(3f(n∆t,Xn)− f((n− 1)∆t,Xn−1))

Xn+1 = Xn +
∆t

24

(
55f(n∆t,Xn)− 59f((n− 1)∆t,Xn−1)

+37f((n− 2)∆t,Xn−2)− 9f((n− 2)∆t,Xn−2)
)
,

(1.23)

respectively.

Exercise 1.11 Implement in Matlab the Adams-Bashforth methods in (1.23) to solve
the harmonic oscillator problem (1.5). Compare with previous discretizations.
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2 Finite Differences for Parabolic Equations

2.1 One dimensional Heat equation

Equation. Let us consider the simplest example of a parabolic equation

∂u

∂t
(t, x)− ∂2u

∂x2
(t, x) = 0, x ∈ R, t ∈ (0, T )

u(0, x) = u0(x), x ∈ R.
(2.1)

This is the one-dimensional (in space) heat equation. Note that the equation is also
linear, in the sense that the map u0(x) 7→ u(x, t) at a given time t > 0 is linear. In
the rest of the course, we will mostly be concerned with linear equations. This equation
actually admits an exact solution, given by

u(t, x) =
1√
4πt

∫ ∞

−∞
exp

(
− |x− y|2

4t

)
u0(y)dy. (2.2)

Exercise 2.1 Show that (2.2) solves (2.1).

Discretization. We now want to discretize (2.1). This time, we have two variables
to discretize, time and space. The finite difference method consists of (i) introducing
discretization points Xn = n∆x for n ∈ Z and ∆x > 0, and Tn = n∆t for 0 ≤ n ≤ N =
T/∆t and Dt > 0; (ii) approximating the solution u(t, x) by

Un
j ≈ u(Tn, Xj), 1 ≤ n ≤ N, j ∈ Z. (2.3)

Notice that in practice, j is finite. However, to simplify the presentation, we assume
here that we discretize the whole line x ∈ R.

The time variable is very similar to what we had for ODEs: knowing what happens
at Tn = n∆t, we would like to get what happens at Tn+1 = (n + 1)∆t. We therefore
introduce the notation

∂tU
n
j =

Un+1
j − Un

j

∆t
. (2.4)

The operator ∂t plays the same role for the series Un
j as

∂

∂t
does for the function u(t, x).

The spatial variable is quite different from the time variable. There is no privileged
direction of propagation (we do not know a priori if information comes from the left
or the right) as there is for the time variable (we know that information at time t will
allow us to get information at time t + ∆t). This intuitively explains why we introduce
two types of discrete approximations for the spatial derivative:

∂xU
n
j =

Un
j+1 − Un

j

∆x
, and ∂xU

n
j =

Un
j − Un

j−1

∆x
(2.5)

These are the forward and backward finite difference quotients, respectively. Now in
(2.1) we have a second-order spatial derivative. Since there is a priori no reason to
assume that information comes from the left or the right, we choose

∂2u

∂x2
(Tn, Xj) ≈ ∂x∂xU

n
j = ∂x∂xU

n
j =

Un
j+1 − 2Un

j + Un
j−1

∆x2
. (2.6)
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Exercise 2.2 Check the equalities in (2.6).

Notice that the discrete differentiation in (2.6) is centered: it is symmetric with respect
to what comes from the left and what comes from the right. The finite difference scheme
then reads

Un+1
j − Un

j

∆t
−

Un
j+1 − 2Un

j + Un
j−1

∆x2
= 0. (2.7)

This is clearly an approximation of (2.1). This is also the simplest scheme called the
explicit Euler scheme. Notice that this can be recast as

Un+1
j = λ(Un

j+1 + Un
j−1) + (1− 2λ)Un

j , λ =
∆t

∆x2
. (2.8)

Exercise 2.3 Check this.

The numerical procedure is therefore straightforward: knowing Un
j for j ∈ Z, we cal-

culate Un+1
j for j ∈ Z for 0 ≤ n ≤ N − 1. There are then several questions that come

to mind: is the scheme stable (i.e. does Un
j remains bounded for n = N independently

of the choices of ∆t and ∆x)?, does it converge (is Un
j really a good approximation of

u(n∆t, j∆x) as advertised)?, and how fast does it converge (what is the error between
Un

j and u(n∆t, j∆x))?

Exercise 2.4 Discretizing the interval (−10, 10) with N points, use a numerical ap-
proximation of (2.1) to compute u(t, x) for t = 0.01, t = 0.1, t = 1, and t = 10 assuming
that the initial condition is u0(x) = 1 on (−1, 1) and u0(x) = 0 elsewhere. Implement
the algorithm in Matlab.

Stability. Our first concern will be to ensure that the scheme is stable. The norm we
choose to measure stability is the supremum norm. For series U = {Uj}j∈Z defined on
the grid j ∈ Z by Uj, we define

‖U‖∞ = sup
j∈Z
|Uj|. (2.9)

Stability means that there exists a constant C independent of ∆x, ∆t and 1 ≤ n ≤ N =
T/∆t such that

‖Un‖∞ = sup
j∈Z
|Un

j | ≤ C‖U0‖∞ = C sup
j∈Z
|U0

j |. (2.10)

Since u(t, x) remains bounded for all times (see (2.2)), it is clear that if the scheme is
unstable, it has no chance to converge. We actually have to consider two cases according
as λ ≤ 1/2 or λ > 1/2. When λ > 1/2, the scheme will be unstable! To show this we
choose some initial conditions that oscillate very rapidly:

U0
j = (−1)jε, ε > 0.

Here ε is a constant that can be chosen as small as one wants. We easily verify that
‖U0

j ‖∞ = ε. Now straightforward calculations show that

U1
j =

[
λ
(
(−1)j+1 + (−1)j−1

)
+ (1− 2λ)(−1)j

]
ε = (1− 4λ)(−1)jε.
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By induction this implies that

Un
j = (1− 4λ)n(−1)jε. (2.11)

Now assume that λ > 1/2. This implies that ρ = −(1− 4λ) > 1, whence

‖Un‖∞ = ρnε→∞ as n→∞.

For instance, for n = N = T/∆t, we have that ‖UN‖∞, which was supposed to be
an approximation of sup

x∈R
|u(T, x)|, tends to infinity as ∆t → 0. Obviously (2.10) is

violated: there is no constant C independent of ∆t such that (2.10) holds. In practice,
what this means is that any small fluctuation in the initial data (for instance caused by
computer round-off) will be amplified by the scheme exponentially fast as in (2.11) and
will eventually be bigger than any meaningful information.

This behavior has to be contrasted with the case λ ≤ 1/2. There, stability is obvious.
Since both λ and (1− 2λ) are positive, we deduce from (2.8) that

|Un+1
j | ≤ sup{|Un

j−1|, |Un
j |, |Un

j+1|}. (2.12)

Exercise 2.5 Check it.

So obviously,
‖Un+1‖∞ ≤ ‖Un‖∞ ≤ ‖U0‖∞.

So (2.10) is clearly satisfied with C = 1. This property is referred to as a maximum
principle: the discrete solution at later times (n ≥ 1) is bounded by the maximum of the
initial solution. Notice that the continuous solution of (2.1) also satisfies this property.

Exercise 2.6 Check this using (2.2). Recall that
∫ ∞
−∞ e−x2

dx =
√

π.

Maximum principles are very important in the analysis of partial differential equations.
Although we are not going to use them further here, let us still mention that it is
important in general to enforce that the numerical schemes satisfy as many properties
of the continuous equation as possible.

We have seen that λ ≤ 1/2 is important to ensure stability. In terms of ∆t and ∆x,
this reads

∆t ≤ 1

2
∆x2. (2.13)

This is the simplest example of the famous CFL condition (after Courant, Friedrich, and
Lewy who formulated it first). We shall see that explicit schemes are always conditionally
stable for parabolic equations, whereas implicit schemes will be unconditionally stable,
whence their practical interest. Notice that ∆t must be quite small (of order ∆x2) in
order to obtain stability.

Convergence. Now that we have stability for the Euler explicit scheme when λ ≤ 1/2,
we have to show that the scheme converges. This is done by assuming that we have a
local consistency of the discrete scheme with the equation, and that the solution of the
equation is sufficiently regular. We therefore use the three same main ingredients as for
ODEs: stability, consistency, regularity of the exact solution.
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More specifically, let us introduce the error series zn = {zn
j }j∈Z defined by

zn
j = Un

j − un
j , where un

j = u(n∆t, j∆x).

Convergence means that ‖zn‖∞ converges to 0 as ∆t → 0 and ∆x → 0 (with the
constraint that λ ≤ 1/2) for all 1 ≤ n ≤ N = T/∆t. The order of convergence is
how fast it converges. To simplify, we assume that λ ≤ 1/2 is fixed and send ∆t → 0
(in which case ∆x =

√
λ−1∆t also converges to 0). Our main ingredient is now the

Taylor expansion (1.6). The consistency of the scheme consists of showing that the real
dynamics are well approximated. More precisely, assuming that the solution at time
Tn = n∆t is given by un

j on the grid, and that Un
j = un

j , we have to show that the real

solution at time un+1
j is well approximated by Un+1

j . To answer this, we calculate

τn
j = ∂tu

n
j − ∂x∂xu

n
j . (2.14)

The expression τn
j is the truncation or local discretization error. Using Taylor expan-

sions, we find that

u(t + ∆t)− u(t)

∆t
=

∂u

∂t
(t) +

∆t

2

∂2u

∂t2
(t + s)

u(x + ∆x)− 2u(x) + u(x−∆x)

∆x2
=

∂2u

∂x2
(x) +

∆x2

12

∂4u

∂x4
(x + h),

for some 0 ≤ s ≤ ∆t and −∆x ≤ h ≤ ∆x.

Exercise 2.7 Check this.

Since (2.1) is satisfied by u(t, x) we deduce that

τn
j =

∆t

2

∂2u

∂t2
(n∆t + s)− ∆x2

12

∂4u

∂x4
(j∆x + h)

= ∆x2
[λ

2

∂2u

∂t2
(n∆t + s)− 1

12

∂4u

∂x4
(j∆x + h)

]
.

The truncation error is therefore of order m = 2 since it is proportional to ∆x2. Of
course, this accuracy holds if we can bound the term in the square brackets indepen-
dently of the discretization parameters ∆t and ∆x. Notice however that this term only
involves the exact solution u(t, x). All we need is that the exact solution is sufficiently
regular. Again, this is independent of the discretization scheme we choose.

Let us assume that the solution is sufficiently regular (what we need is that it is
of class C2,4, i.e. that it is continuously differentiable 2 times in time and 4 times in
space). We then deduce that

‖τn‖∞ ≤ C∆x2 ∼ C∆t (2.15)

where C is a constant independent of ∆x (and ∆t since λ is fixed). Since Un satisfies
the discretized equation, we deduce that

∂tz
n
j − ∂x∂xz

n
j = −τn

j . (2.16)

12



or equivalently that

zn+1
j = λ(zn

j+1 + zn
j−1) + (1− 2λ)zn

j −∆tτn
j . (2.17)

The above equation allows us to analyze local consistency. Indeed, let us assume that the
exact solution is known on the spatial grid at time step n. This implies that zn = 0, since
the latter is by definition the difference between the exact solution and the approximate
solution on the spatial grid. Equation (2.17) thus implies that

zn+1
j = −∆tτn

j ,

so that
‖zn+1‖∞ ≤ C∆t2 ∼ C∆t∆x2, (2.18)

thanks to (2.15). Comparing with the section on ODEs, this implies that the scheme
is of order m = 1 in time since ∆t2 = ∆tm+1 for m = 1. Being of order 1 in time
implies that the scheme is of order 2 is space since ∆t = λ∆x2. This will be confirmed
in Theorem 2.1 below.

Let us now conclude the analysis of the error estimate and come back to (2.17).
Using the stability estimate (2.12) for the homogeneous problem (because λ ≤ 1/2!)
and the bound (2.15), we deduce that

‖zn+1‖∞ ≤ ‖zn‖∞ + C∆t∆x2.

This in turn implies that

‖zn‖∞ ≤ nC∆t∆x2 ≤ CT∆x2.

We summarize what we have obtain as

Theorem 2.1 Let us assume that u(t, x) is of class C2,4 and that λ ≤ 1/2. Then we
have that

sup
j∈Z;0≤n≤N

|u(n∆t, j∆x)− Un
j | ≤ C∆x2, (2.19)

where C is a constant independent of ∆x and λ ≤ 1/2.

The explicit Euler scheme is of order 2 in space. But this corresponds to a scheme
of order 1 in time since ∆t = λ∆x2 ≤ ∆x2/2. Therefore it does not converge very fast.

Exercise 2.8 Implement the explicit Euler scheme in Matlab by discretizing the parabolic
equation on x ∈ (−10, 10) and assuming that u(t,−10) = u(t, 10) = 0. You may choose
as an initial condition u0(x) = 1 on (−1, 1) and u0(x) = 0 elsewhere. Choose the dis-
cretization parameters ∆t and ∆x such that λ = .48, λ = .5, and λ = .52. Compare
the stable solutions you obtain with the solution given by (2.2).

Exercise 2.9 Following the techniques described in Chapter 1, derive a scheme of order
4 in space (still with ∆t = λ∆x2 and λ sufficiently small that the scheme is stable).
Implement this new scheme in Matlab and compare it with the explicit Euler scheme
on the numerical simulation described in exercise 2.8.
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2.2 Fourier transforms

We now consider a fundamental tool in the analysis of partial differential equations with
homogeneous coefficients and their discretization by finite differences: Fourier trans-
forms.

There are many ways of defining the Fourier transform. We shall use the following
definition

[Fx→ξf ](ξ) ≡ f̂(ξ) =

∫ ∞

−∞
e−ixξf(x)dx. (2.20)

The inverse Fourier transform is defined by

[F−1
ξ→xf̂ ](x) ≡ f(x) =

1

2π

∫ ∞

−∞
eixξf̂(ξ)dξ. (2.21)

In the above definition, the operator F is applied to the function f(x), which it
maps to the function f̂(ξ). The notation can become quite useful when there are several
variables and one wants to emphasize with respect to with variable Fourier transform is
taken. We call the spaces of x’s the physical domain and the space of ξ’s the wavenumber
domain, or Fourier domain. Wavenumbers are to positions what frequencies are to times.
If you are more familiar with Fourier transforms of signals in time, you may want to
think of “frequencies” each time you see “wavenumbers”. A crucial property, which
explains the terminology of “forward” and “inverse” Fourier transforms, is that

F−1
ξ→xFx→ξf = f, (2.22)

which can be recast as

f(x) =
1

2π

∫ ∞

−∞
eixξ

∫ ∞

−∞
e−iyξf(y)dydξ =

∫ ∞

−∞

( ∫ ∞

−∞

ei(x−y)ξ

2π
dξ

)
f(y)dy.

This implies that ∫ ∞

−∞

eizξ

2π
dξ = δ(z),

the Dirac delta function since f(x) =
∫ ∞
−∞ δ(x− y)f(y)dy by definition. Another way of

understanding this is to realize that

[Fδ](ξ) = 1, [F−11](x) = δ(x). (2.23)

The first equality can also trivially been deduced from (2.20).
Another interesting calculation for us is that

[F exp(−α

2
x2)](ξ) =

√
2π

α
exp(− 1

2α
ξ2). (2.24)

In other words, the Fourier transform of a Gaussian is also a Gaussian. Notice this im-
portant fact: a very narrow Gaussian (α very large) is transformed into a very wide one
(α−1 is very small) are vice-versa. This is related to Heisenberg’s uncertainty principle
in quantum mechanics, and it says that you cannot be localized in the Fourier domain
when you are localized in the spatial domain and vice-versa.
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Exercise 2.10 Check (2.24) using integration in the complex plane (which essentially
says that

∫ ∞
−∞ e−β(x−iρ)2dx =

∫ ∞
−∞ e−βx2

dx for ρ ∈ R by contour change since z → e−βz2

has no pole in C).

The simplest property of the Fourier transform is its linearity:

[F(αf + βg)](ξ) = α[Ff ](ξ) + β[Fg](ξ). (2.25)

Other very important properties of the Fourier transform are as follows:

[Ff(x + y)](ξ) = eiyξf̂(ξ), [Ff(νx)](ξ) =
1

|ν|
f̂
( ξ

ν

)
, (2.26)

for all y ∈ R and ν ∈ R\{0}.

Exercise 2.11 Check these formulas.

The first equality shows how the Fourier transform acts on translations by a factor y,
the second how it acts on dilation. The former is extremely important in the analysis
of PDEs and their finite difference discretization:

Fourier transforms replace translations in the physical domain by multipli-
cations in the Fourier domain.
More precisely, translation by y is replaced by multiplication by eiyξ.

The reason this is important is that you can’t beat multiplications in simplicity. To
further convince you of the importance of the above assertion, consider derivatives of
functions. By linearity of the Fourier transform, we get that[

F f(x + h)− f(x)

h

]
(ξ) =

[Ff(x + h)](ξ)− [Ff(x)](ξ)

h
=

eihξ − 1

h
f̂(ξ)

Now let us just pass to the limit h→ 0 in both sides. We get

f̂ ′(ξ) = [Ff ′](ξ) = iξf̂(ξ). (2.27)

Again,

Fourier transforms replace differentiation in the physical domain by multi-
plication in the Fourier domain.

More precisely,
d

dx
is replaced by multiplication by iξ.

This assertion can easily been directly verified from the definition (2.20). However, it
is useful to see differentiation as a limit of differences of translations. Moreover, finite
differences are based on translations so we see how Fourier transforms will be useful in
their analysis.

One last crucial and quite related property of the Fourier transform is that it replaces
convolutions by multiplications. The convolution of two functions is given by

(f ∗ g)(x) =

∫ ∞

−∞
f(x− y)g(y)dy =

∫ ∞

−∞
f(y)g(x− y)dy. (2.28)

The Fourier transform is then given by

[F(f ∗ g)](ξ) = f̂(ξ)ĝ(ξ). (2.29)
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Exercise 2.12 Check this.

This important relation can be used to prove the equally important (everything is im-
portant in this section!) Parseval equality∫ ∞

−∞
|f̂(ξ)|2dξ = 2π

∫ ∞

−∞
|f(x)|2dx, (2.30)

for all complex-valued function f(x) such that the above integrals make sense. We

show this as follows. We first recall that f̂(ξ) = f̂(−ξ), where f denotes the complex

conjugate to f . We also define g(x) = f(−x), so that ĝ(ξ) = f̂(−ξ) using (2.26) with
ν = −1. We then have∫ ∞

−∞
|f̂(ξ)|2dξ =

∫ ∞

−∞
f̂(ξ)f̂(ξ)dξ =

∫ ∞

−∞
f̂(ξ)f̂(−ξ)dξ =

∫ ∞

−∞
f̂(ξ)g(ξ)dξ

=

∫ ∞

−∞
(̂f ∗ g)(ξ)dξ thanks to (2.28)

= 2π(f ∗ g)(0) using the definition (2.21) with x = 0

= 2π

∫ ∞

−∞
f(y)g(−y)dy by definition of the convolution

= 2π

∫ ∞

−∞
f(y)f(y)dy = 2π

∫ ∞

−∞
|f(y)|2dy.

The Parseval equality (2.30) essentially says that there is as much energy (up to a factor
2π) in the physical domain (left-hand side in (2.30)) as in the Fourier domain (right-hand
side).

Application to the heat equation. Before considering finite differences, here is an
important exercise that shows how powerful Fourier transforms are to solve PDEs with
constant coefficients.

Exercise 2.13 Consider the heat equation (2.1). Using the Fourier transform, show
that

∂û(t, ξ)

∂t
= −ξ2û(t, ξ).

Here we mean û(t, ξ) = [Fx→ξu(t, x)](t, ξ). Solve this ODE. Then using (2.24) and
(2.28), recover (2.2).

Application to Finite Differences. We now use the Fourier transform to analyze
finite difference discretizations. To simplify we still assume that we want to solve the
heat equation on the whole line x ∈ R.

Let u0(x) be the initial condition for the heat equation. If we use the notation

Un(j∆x) = Un
j ≈ u(n∆t, j∆x),

the explicit Euler scheme (2.7) can be recast as

Un+1(x)− Un(x)

∆t
=

Un(x + ∆x) + Un(x−∆x)− 2Un(x)

∆x2
, (2.31)
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where x = j∆x. As before, this scheme says that the approximation U at time Tn+1 =
(n + 1)∆t and position Xj = j∆x depends on the values of U at time Tn and positions
Xj−1, Xj, and Xj+1. It is therefore straightforward to realize that Un(Xj) depends on
u0 at all the points Xk for j − n ≤ k ≤ j + n. It is however not easy at all to get this
dependence explicitly from (2.31).

The key to analyzing this dependence is to go to the Fourier domain. There, trans-
lations are replaced by multiplications, which is much simpler to deal with. Here is how
we do it. We first define U0(x) for all points x ∈ R, not only those points x = Xj = j∆x.
One way to do so is to assume that

u0(x) = U0
j on

(
(j − 1

2
)∆x, (j +

1

2
)∆x

]
. (2.32)

We then define Un(x) using (2.31) initialized with U0(x) = u0(x). Clearly, we have

Un+1(x) = (1− 2λ)Un(x) + λ(Un(x + ∆x) + Un(x−∆x)). (2.33)

We thus define Un(x) for all n ≥ 0 and all x ∈ R by induction. If we choose as initial
condition (2.32), we then easily observe that

Un(x) = Un
j on

(
(j − 1

2
)∆x, (j +

1

2
)∆x

]
, (2.34)

where Un
j is given by (2.7). So analyzing Un(x) is in some sense sufficient to get infor-

mation on Un
j .

Once Un(x) is defined for all n, we can certainly introduce the Fourier transform
Ûn(ξ) defined according to (2.20). However, using the translation property of the Fourier
transform (2.26), we obtain that

Ûn+1(ξ) =
[
1 + λ(eiξ∆x + e−iξ∆x − 2)

]
Ûn(ξ) (2.35)

In the Fourier domain, marching in time (going from step n to step n + 1) is much
simpler than in the physical domain: each wavenumber ξ is multiplied by a coefficient

Rλ(ξ) = 1 + λ(eiξ∆x + e−iξ∆x − 2) = 1− 2λ(1− cos(ξ∆x)). (2.36)

We then have that
Ûn(ξ) = (Rλ(ξ))

nû0(ξ). (2.37)

The question of the stability of a discretization now becomes the following: are all
wavenumbers ξ stable, or equivalently is (Rλ(ξ))

n bounded for all 1 ≤ n ≤ N = T/∆t?
It is easy to observe that when λ ≤ 1/2, |Rλ(ξ)| ≤ 1 for all ξ. We then clearly have

that all wavenumbers are stable since |Ûn(ξ)| ≤ |û0(ξ)|. However, when λ > 1/2, we
can choose values of ξ such that cos(ξ∆x) is close to −1. For such wavenumbers, the
value of Rλ(ξ) is less than −1 so that Ûn changes sign at every new time step n with
growing amplitude (see numerical simulations). Such wavenumbers are unstable.
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2.3 Stability and convergence using Fourier transforms

In this section, we apply the theory of Fourier transform to the analysis of the finite
difference of parabolic equations with constant coefficients.

As we already mentioned, an important property of Fourier transforms is that

∂

∂x
→ iξ,

that is, differentiation is replaced by multiplication by iξ in the Fourier domain. We use
this to define equations in the physical domain as follows

∂u

∂t
(t, x) + P (D)u(t, x) = 0, t > 0, x ∈ R

u(0, x) = u0(x), x ∈ R.
(2.38)

The operator P (D) is a linear operator defined as

P (D)f(x) = F−1
ξ→x

(
P (iξ)Fx→ξf(x)

)
(ξ), (2.39)

where P (iξ) is a function of iξ. Here D stands for ∂
∂x

. What the operator P (D) does

is: (i) take the Fourier transform of f(x), (ii) multiply f̂(ξ) by the function P (iξ), (iii)
take the inverse Fourier transform of the product.

The function P (iξ) is called the symbol of the operator P (D). Such operators are
called pseudo-differential operators.

Why do we introduce all this? The reason, as it was mentioned in the previous
section, is that the analysis of differential operators simplifies in the Fourier domain.
The above definition gives us a mathematical framework to build on this idea. Indeed,
let us consider (2.38) in the Fourier domain. Upon taking the Fourier transform Fx→ξ

term by term in (2.38), we get that

∂û

∂t
(t, ξ) + P (iξ)û(t, ξ) = 0, t > 0, ξ ∈ R,

û(0, ξ) = û0(ξ), ξ ∈ R.
(2.40)

As promised, we have replaced the “complicated” pseudo-differential operator P (D) by
a mere multiplication by P (iξ) in the Fourier domain. For every ξ ∈ R, (2.40) consists
of a simple linear first-order ordinary differential equation. Notice the parallel between
(2.38) and (2.40): by going to the Fourier domain, we have replaced the differentiation
operator D = ∂

∂x
by iξ. The solution of (2.40) is then obviously given by

û(t, ξ) = e−tP (iξ)û0(ξ). (2.41)

The solution of (2.38) is then given by

u(t, x) = F−1
ξ→x(e

−tP (iξ)) ∗ u0(x). (2.42)

Exercise 2.14 (i) Show that the parabolic equation (2.1) takes the form (2.38) with
symbol P (iξ) = ξ2.
(ii) Find the equation of the form (2.38) with symbol P (iξ) = ξ4.
(iii) Show that any arbitrary partial differential equation of order m ≥ 1 in x with con-
stant coefficients can be written in the form (2.38) with the symbol P (iξ) a polynomial
of order m.

18



Parabolic Symbol. In this section, we only consider real-valued symbols such that
for some M > 0,

P (iξ) ≥ C|ξ|M , for all ξ ∈ R. (2.43)

With a somewhat loose terminology, we refer to equations (2.38) with real-valued symbol
P (iξ) satisfying the above constraint as parabolic equations. The heat equation clearly
satisfies the above requirement with M = 2. The real-valuedness of the symbol is not
necessary but we shall impose it to simplify.

What about numerical schemes? Our definition so far provides a great tool to
analyze partial differential equations. It turns out it is also very well adapted to the
analysis of finite difference approximations to these equations. The reason is again that
finite difference operators are transformed into multiplications in the Fourier domain.

A general single-step finite difference scheme is given by

B∆Un+1(x) = A∆Un(x), n ≥ 0, (2.44)

with U0(x) = u0(x) a given initial condition. Here, the finite difference operators are
defined by

A∆U(x) =
∑
α∈Iα

aαU(x− α∆x), B∆U(x) =
∑
β∈Iβ

bβU(x− β∆x), (2.45)

where Iα ⊂ Z and Iβ ⊂ Z are finite sets of integers. Although this definition may look
a little complicated at first, we need such a complexity in practice. For instance, the
explicit Euler scheme is given by

Un+1(x) = (1− 2λ)Un(x) + λ(Un(x−∆x) + Un(x + ∆x)).

This corresponds to the coefficients

b0 = 1, a−1 = λ, a0 = 1− 2λ, a1 = λ,

and all the other coefficients aα and bβ vanish. Explicit schemes are characterized by
the fact that only b0 does not vanish. We shall see that implicit schemes, where other
coefficients bβ 6= 0, are important in practice.

Notice that we are slightly changing the problem of interest. Finite difference
schemes are supposed to be defined on the grid ∆xZ (i.e. the points xm = m∆x
for m ∈ Z), not on the whole axis R. Let us notice however that from the definition
(2.44), the values of Un+1 on the grid ∆xZ only depend on the values of u0 on the same
grid, and that Un+1(j∆x) = Un+1

j , using the notation of the preceding section. In other
words Un+1(j∆x) does not depend on how we extend the initial condition u0 originally
defined on the grid ∆xZ to the whole line R. This is why we replace Un+1

j by Un+1(x)
in the sequel and only consider properties of Un+1(x). In the end, we should see how
the properties on Un+1(x) translate into properties on Un+1

j . This is easy to do when
Un+1(x) is chosen as a piecewise constant function and more difficult when higher order
polynomials are used to construct it. It can be done but requires careful analysis of the
error made by interpolating smooth functions by polynomials. We do not consider this
problem in these notes.
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We now come back to (2.44). From now on, this is our definition of a finite difference
scheme and we want to analyze its properties. As we already mentioned, this equation
is simpler in the Fourier domain. Let us thus take the Fourier transform of each term
in (2.44). What we get is( ∑

β∈Iβ

bβe−iβ∆xξ
)
Ûn+1(ξ) =

( ∑
α∈Iα

aαe−iα∆xξ
)
Ûn(ξ). (2.46)

Let us introduce the symbols

A∆(ξ) =
( ∑

α∈Iα

aαe−iα∆xξ
)
, B∆(ξ) =

( ∑
β∈Iβ

bβe−iβ∆xξ
)
. (2.47)

In the implicit case, we assume that

B∆(ξ) 6= 0. (2.48)

In the explicit case, B∆(ξ) ≡ 1 and the above relation is obvious. We then obtain that

Ûn+1(ξ) = R∆(ξ)Ûn(ξ) = B∆(ξ)−1A∆(ξ)Ûn(ξ). (2.49)

This implies
Ûn(ξ) = Rn

∆(ξ)û0(ξ). (2.50)

The above relation completely characterizes the solution Ûn(ξ). To obtain the solution
Un(x), we simply have to take the inverse Fourier transform of Ûn(ξ).

Exercise 2.15 Verify that for the explicit Euler scheme, we have

R∆(ξ) = 1− 2∆t

(∆x)2
(1− cos(ξ∆x)).

Notice that the difference between the exact solution û(n∆t, ξ) at time n∆t and its
approximation Ûn(ξ) is given by

û(n∆t, ξ)− Ûn(ξ) =
(
e−n∆tP (iξ) −Rn

∆(ξ)
)
û0(ξ). (2.51)

This is what we want to analyze.
To measure convergence, we first need to define a norm, which will tell us how far

or how close two functions are from one another. In finite dimensional spaces (such as
Rn that we used for ordinary differential equations), all norms are equivalent (this is a
theorem). In infinite dimensional spaces, all norms are not equivalent (this is another
theorem; the equivalence of all norms on a space implies that it is finite dimensional...)
So the choice of the norm matters!

Here we only consider the L2 norm, defined on R for sufficiently regular complex-
valued functions f by

‖f‖ =
( ∫ ∞

−∞
|f(x)|2dx

)1/2

. (2.52)

The reason why this norm is nice is that we have the Parseval equality

‖f̂(ξ)‖ =
√

2π‖f(x)‖. (2.53)
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This means that the L2 norms in the physical and the Fourier domains are equal (up
to the factor

√
2π). Most norms do not have such a nice interpretation in the Fourier

domain. This is one of the reasons why the L2 norm is so popular.
Our analysis of the finite difference scheme is therefore concerned with characterizing

‖u(n∆t, x)− Un(x)‖.

We just saw that this was equivalent to characterizing

‖εn(ξ)‖ = ‖û(n∆t, ξ)− Ûn(ξ)‖ = ‖
(
e−n∆tP (iξ) −Rn

∆(ξ)
)
û0(ξ)‖.

The control that we will obtain on εn(ξ) depends on the three classical ingredients:
regularity of the solution, stability of the scheme, and consistency of the approximation.

The convergence arises as two parameters, ∆t and ∆x, converge to 0. To simplify
the analysis, we assume that the two parameters are related by

λ =
∆t

∆xM
, (2.54)

where M is the order of the parabolic equation (M = 2 for the heat equation), and
where λ > 0 is fixed.

Regularity. The regularity of the exact equation is first seen in the growth of |e−∆tP (iξ)|.
Since our operator as assumed to be parabolic, we have

|e−∆tP (iξ)| ≤ e−C∆t|ξ|M . (2.55)

Stability. We impose that there exists a constant C independent of ξ and 1 ≤ n ≤
N = T/∆t such that

|Rn
∆(ξ)| ≤ C, ξ ∈ R, 1 ≤ n ≤ N. (2.56)

The stability constraint is clear: no wavenumber ξ can grow out of control.

Exercise 2.16 Check again that the above constraint is satisfied for the explicit Euler
scheme if and only if λ ≤ 1/2.

What makes parabolic equations a little special is that they have better stability prop-
erties than just having bounded symbols. The exact symbol satisfies that

|e−n∆tP (iξ)| ≤ e−Cn∆t|ξ|M , (2.57)

for some constant C. This relation is important because we deduce that high wavenum-
bers (large ξ’s) are heavily damped by the operator. Parabolic equations have a very
efficient smoothing effect. Even if high wavenumbers are present in the initial solution,
they quickly disappear as time increases.

Not surprisingly, the finite difference approximation partially retains this effect. We
have however to be careful. The reason is that the scheme has a given scale, ∆x, at
which it approximates the exact operator. For length scales much larger than ∆x, we
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expect the scheme to be a good approximation of the exact operator. For length of order
(or smaller than) ∆x however, we cannot expect the scheme to be accurate: we do not
have a sufficient resolution. Remember that small scales in the spatial worlds mean
high wavenumbers in the Fourier world (functions that vary on small scales oscillate
fast, hence are composed of large wavenumbers). Nevertheless, for wavenumbers that
are smaller than ∆x−1, we expect the scheme to retain some properties of the exact
equation. For this reason, we impose that the operator R∆ satisfy

|R∆(ξ)| ≤ 1− δ|∆xξ|M for |∆xξ| ≤ γ

|R∆(ξ)| ≤ 1 for |∆xξ| > γ,
(2.58)

where γ and δ are positive constants independent of ξ and ∆x. We then have

Lemma 2.2 We have that

|Rn
∆(ξ)| ≤ e−Cn|∆xξ|M for |∆xξ| ≤ γ. (2.59)

Proof. We deduce from (2.58) that

|Rn
∆(ξ)| ≤ en ln(1−δ|∆xξ|M ) ≤ e−n(δ/2)|∆xξ|M .

Consistency. Let us now turn our attention to the consistency and accuracy of the
finite difference scheme. Here again, we want to make sure that the finite difference
scheme is locally a good approximation of the exact equation. In the Fourier world, this
means that

e−∆tP (iξ) −R∆(ξ) (2.60)

has to converge to 0 as ∆x and ∆t converge to 0. Indeed, assuming that we are given
the exact solution û(n∆t, ξ) at time n∆t, the error made by applying the approximate
equation instead of the exact equation between n∆t and (n + 1)∆t is precisely given by(

e−∆tP (iξ) −R∆(ξ)
)
û(n∆t, ξ).

Again, we have to be a bit careful. We cannot expect the above quantity to be small
for all values of ξ. This is again related to the fact that wavenumbers of order of or
greater than ∆x−1 are not captured by the finite difference scheme.

Exercise 2.17 Show that in the case of the heat equation and the explicit Euler scheme,
the error e−∆tP (iξ) − R∆(ξ) is not small for all wavenumbers of the form ξ = kπ∆x−1

for k = 1, 2, . . ..

Quantitatively, all we can expect is that the error is small when ξ∆x→ 0 and ∆t→ 0.
We say that the scheme is consistent and accurate of order m if

|e−∆tP (iξ) −R∆(ξ)| ≤ C∆t∆xm(1 + |ξ|M+m), ∆x|ξ| < γ, (2.61)

where C is a constant independent of ξ, ∆x, and ∆t.
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Proof of convergence. Let us come back to the analysis of εn(ξ). We have that

εn(ξ) = (e−∆tP (iξ) −R∆(ξ))
n−1∑
k=0

e−(n−1−k)∆tP (iξ)Rk
∆(ξ)û0(ξ),

using an − bn = (a− b)
∑n−1

k=0 an−1−kbk. Let us first consider the case |ξ| ≤ γ∆x−1. We
deduce from (2.57), (2.59), and (2.61), that

|εn(ξ)| ≤ C∆t∆xm(1 + |ξ|M+m)ne−Cn∆t|ξ|M |û0(ξ)|. (2.62)

Now remark that
n∆t|ξ|Me−Cn∆t|ξ|M ≤ C ′.

Since n∆t ≤ T , this implies that

|εn(ξ)| ≤ C∆xm(1 + |ξ|m)|û0(ξ)|. (2.63)

So far, the above inequality holds for |ξ| ≤ γ∆x−1. However, for |ξ| ≥ γ∆x−1, we have
thanks to the stability property (2.56) that

|εn(ξ)| ≤ 2|û0(ξ)| ≤ C∆xm(1 + |ξ|m)|û0(ξ)|. (2.64)

So (2.63) actually holds for every ξ. This implies that

‖εn‖ =
( ∫

R
|εn(ξ)|2dξ

)1/2

≤ C∆xm
( ∫

R
(1 + |ξ|2m)|û0(ξ)|2dξ

)1/2

. (2.65)

This shows that ‖εn‖ is of order ∆xm provided that∫
R
(1 + |ξ|2m)|û0(ξ)|2dξ

)1/2

<∞. (2.66)

The above inequality implies that û0(ξ) decays sufficiently fast as ξ → ∞. This is
actually equivalent to imposing that u0(x) is sufficiently regular.

The Hilbert spaces Hm(R). For a function v(x), we denote by v(n)(x) its nth deriva-
tive. We introduce the sequence of functional spaces Hm = Hm(R) of functions whose
derivatives up to order m are square-integrable. The norm of Hm is defined by

‖v‖Hm =
( m∑

k=0

∫
R
|v(n)(x)|2dx

)1/2

. (2.67)

Notice that H0 = L2, the space of square-integrable functions. It turns out that a
function v(x) belongs to Hm if and only if its Fourier transform v̂(ξ) satisfies that( ∫

R
(1 + |ξ|2m)|v̂(ξ)|2dξ

)1/2

<∞. (2.68)

Exercise 2.18 (difficult) Prove it. The proof is based on the fact that differentiation
in the physical domain is replaced by multiplication by iξ in the Fourier domain.
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Notice that in the above inequality, we can choose m ∈ R and not only m ∈ N∗.
Thus (2.68) can be used as a definition for the space Hm with m ∈ R. The space Hm

is still the space of functions with m square-integrable derivatives. Only the number of
derivatives can be “fractional”, or even negative!

Exercise 2.19 Calculate the Fourier transform of the function v defined by v(x) = 1 on
(−1, 1) and v(x) = 0 elsewhere. Using (2.68), show that the function v belongs to every
space Hm with m < 1/2. This means that functions that are piecewise smooth (with
discontinuities) have a little less than half of a derivative in L2 (you can differentiate
such functions almost 1/2 times)!

The relationship between (2.67) and (2.68) can be explained as follows:

v(x) is smooth ⇐⇒ v̂(ξ) decays fast

in the physical domain in the Fourier domain.

This is another very general and very important property of Fourier transforms. The
equivalence between (2.67) and (2.68) is one manifestation of this “rule”.

Main result of the section. Summarizing all of the above, we have obtained the
following result.

Theorem 2.3 Let us assume that P (iξ) and R∆(ξ) are parabolic, in the sense that
(2.43) and (2.58) are satisfied and that R∆(ξ) is of order m, i.e. (2.61) holds. Assuming
that the initial condition u0 ∈ Hm, we obtain that

‖u(n∆t, x)− Un(x)‖ ≤ C∆xm‖u0‖Hm , for all 0 ≤ n ≤ N = T/∆t. (2.69)

We recall that ∆t = λ∆xM so that in the above theorem, the scheme is of order m in
space and of order m/M in time.

Exercise 2.20 (difficult) Follow the proof of Theorem 2.3 assuming that (2.43) and
(2.58) are replaced by P (iξ) ≥ 0 and R∆(ξ) ≤ 1. Show that (2.69) should be replaced
by

‖u(n∆t, x)− Un(x)‖ ≤ C∆xm‖u0‖Hm+M , for all 0 ≤ n ≤ N = T/∆t. (2.70)

Loosely speaking, what this means is that we need the initial condition to be more
regular if the equation is not regularizing. You can compare this with Theorem 2.1: to
obtain a convergence of order 2 in space, we have to assume that the solution u(t, x) is
of order C4 is space. This is consistent with the above result with M = 2 and m = 2.

Exercise 2.21 (very difficult). Assuming that (2.58) is replaced by R∆(ξ) ≤ 1, show
that (2.69) should be replaced by

‖u(n∆t, x)− Un(x)‖ ≤ C∆xm‖u0‖Hm+ε , for all 0 ≤ n ≤ N = T/∆t. (2.71)

Here ε is an arbitrary positive constant. Of course, the constant C depends on ε. What
this result means is that if we loose the parabolic property of the discrete scheme, we
still have the same order of convergence provided that the initial condition is slightly
more regular than being in Hm.
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Exercise 2.22 Show that any stable scheme that is convergent of order m is also con-
vergent of order αm for all 0 ≤ α ≤ 1. Deduce that (2.69) in Theorem 2.3 can then be
replaced by

‖u(n∆t, x)− Un(x)‖ ≤ C∆xαm‖u0‖Hαm , for all 0 ≤ n ≤ N = T/∆t. (2.72)

The interest of this result is the following: when the initial data u0 is not sufficiently
regular to be in Hm but sufficiently regular to be in Hαm with 0 < α < 1, we still have
convergence of the finite difference scheme as ∆x→ 0; however the rate of convergence
is slower.

Exercise 2.23 Show that everything we have said in this section holds if we replace
(2.43) and (2.58) by

Re P (iξ) ≥ C(|ξ|M − 1) and |R∆(ξ)| ≤ 1− δ|∆xξ|M + C∆t, |∆xξ| ≤ γ,

respectively. Here, Re stands for “real part”. The above hypotheses are sufficiently
general to cover most practical examples of parabolic equations.

Exercise 2.24 Show that schemes accurate of order m > 0 so that (2.61) holds and
verifying |R∆(ξ)| ≤ 1 are stable in the sense that

|R∆(ξ)| ≤ (1 + C∆xm∆t)− δ|∆xξ|M , |∆xξ| ≤ γ.

The last exercises show that schemes that are stable in the “classical” sense, i.e., that
verify |R∆(ξ)| < 1, and are consistent with the smoothing parabolic symbol, are them-
selves smoothing.

2.4 Application to the θ schemes

We are now ready to analyze the family of schemes for the heat equation (i.e. P (iξ) = ξ2)
called the θ schemes.

The θ scheme is defined by

∂tU
n(x) = θ∂x∂xU

n+1(x) + (1− θ)∂x∂xU
n(x). (2.73)

Recall that the finite difference operators are defined by (2.4) and (2.5). When θ = 0,
we recover the explicit Euler scheme. For θ = 1, the scheme is called the fully implicit
Euler scheme. For θ = 1/2, the scheme is called the Crank-Nicolson scheme. We recall
that ∆t = λ∆x2.

Exercise 2.25 Show that the symbol of the θ scheme is given by

R∆(ξ) =
1− 2(1− θ)λ(1− cos(∆xξ))

1 + 2θλ(1− cos(∆xξ))
. (2.74)

Let us first consider the stability of the θ method. Let us assume that 0 ≤ θ ≤ 1. We
observe that R∆(ξ) ≤ 1. The stability requirement is therefore that

min
ξ

R∆(ξ) ≥ −1.

25



Exercise 2.26 Show that the above inequality holds if and only if

(1− 2θ)λ ≤ 1

2
.

This shows that the method is unconditionally L2-stable when θ ≥ 1/2, i.e. that the
method is stable independently of the choice of λ. When θ < 1/2, stability only holds
if and only if

λ ≤ 1

2(1− 2θ)
.

Let us now consider the accuracy of the θ method. Obviously we need to show that
(2.61) holds for some m > 0.

Exercise 2.27 Show that

e−∆tξ2

= 1−∆tξ2 +
1

2
∆t2ξ4 − 1

6
∆t3ξ6 + O(∆t4ξ8), (2.75)

and that

R∆(ξ) = 1−∆tξ2+∆t∆x2(
1

12
+λθ)ξ4−∆t2∆x4

360
(1+60λθ+360λ2θ2)+O(∆t4ξ8), (2.76)

as ∆t→ 0 and ∆xξ → 0.

Exercise 2.28 Show that the θ scheme is always at least second-order in space (first-
order in time).
Show that the scheme is of order 4 in space if and only if

θ =
1

2
− 1

12λ
.

Show that the scheme is of order 6 in space if in addition,

1 + 60λθ + 360λ2θ2 = 60λ2, i.e., λ =
1

10

√
5.

Implementation of the θ scheme. The above analysis shows that the θ scheme is
unconditionally stable when θ ≥ 1/2. This very nice stability property comes however
at a price: the calculation of Un+1 from Un is no longer explicit.

Exercise 2.29 Show that the θ scheme can be put in the form (2.44) with

b−1 = b1 = −θλ, b0 = 1 + 2λθ, a−1 = a1 = (1− θ)λ, a0 = 1− 2(1− θ)λ

Since the coefficient b1 and b−1 do not vanish, the scheme is no longer explicit. Let us
come back to the solution Un

j defined on the grid ∆xZ. The operators A∆ and B∆ in
(2.45) are now infinite matrices such that

B∆Un+1 = A∆Un
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where the infinite vector Un = (Un
j )j∈Z. In matrix form, we obtain that the operator

B∆ for the θ scheme is given by the infinite matrix

B∆ =


1 + 2θλ −θλ 0 0 0

−θλ 1 + 2θλ −θλ 0 0

0 −θλ 1 + 2θλ −θλ 0

0 0 −θλ 1 + 2θλ −θλ

0 0 0 −θλ 1 + 2θλ

 . (2.77)

Similarly, the matrix A∆ is given by

A∆ =


1− 2(1− θ)λ (1− θ)λ 0 0 0

(1− θ)λ 1− 2(1− θ)λ (1− θ)λ 0 0

0 (1− θ)λ 1− 2(1− θ)λ (1− θ)λ 0

0 0 (1− θ)λ 1− 2(1− θ)λ (1− θ)λ

0 0 0 (1− θ)λ 1− 2(1− θ)λ

 .

(2.78)
The vector Un+1 is thus given by

Un+1 = (B∆)−1A∆Un. (2.79)

This implies that in any numerical implementation of the θ scheme where θ > 0, we need
to invert the system B∆Un+1 = A∆Un (which is usually much faster than constructing
the matrix (B∆)−1 directly). In practice, we cannot use infinite matrices obviously.
However we can use the N ×N matrices above on an interval of size N∆x given. The
above matrices correspond to imposing that the solution vanishes at the boundary of
the interval (Dirichlet boundary conditions).

Exercise 2.30 Implement the θ scheme in Matlab for all possible values of 0 ≤ θ ≤ 1
and λ > 0.
Verify on a few examples with different values of θ < 1/2 that the scheme is unstable
when λ is too large.
Verify numerically (by dividing an initial spatial mesh by a factor 2, then 4) that the
θ scheme is of order 2, 4, and 6 in space for well chosen values of θ and λ. To obtain
these orders of convergence, make sure that the initial condition is sufficiently smooth.
For non-smooth initial conditions, show that the order of convergence decreases and
compare with the theoretical predictions of Theorem 2.3.
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3 Finite Differences for Elliptic Equations

The prototype of elliptic equation we consider is the following two-dimensional diffusion
equation with absorption coefficient

−∆u(x) + σu(x) = f(x), x ∈ R2. (3.1)

Here, x = (x, y) ∈ R2, f(x) is a given source term, σ is a given positive absorption
coefficient, and

∆ = ∇2 =
∂2

∂x2
+

∂2

∂y2

is the Laplace operator. We assume that our domain has no boundaries to simplify. The
above partial differential equation can be analyzed by Fourier transform. In two-space
dimensions, the Fourier transform is defined by

[Fx→ξf ](ξ) ≡ f̂(ξ) =

∫
R2

e−ix·ξf(x)dx. (3.2)

The inverse Fourier transform is then defined by

[F−1
ξ→xf̂ ](x) ≡ f(x) =

1

(2π)2

∫
R2

eix·ξf̂(ξ)dξ. (3.3)

We still verify that the Fourier transform replaces translations and differentiation by
multiplications. More precisely, we have

[Ff(x + y)](ξ) = eiy·ξf̂(ξ), [F∇f(x)](ξ) = iξf̂(ξ). (3.4)

Notice here that both ∇ and ξ are 2-vectors. This implies that the operator −∆ is
replaced by a multiplication by |ξ|2 (Check it!). Upon taking the Fourier transform in
both terms of the above equation, we obtain that

(σ + |ξ|2)û(ξ) = f̂(ξ), ξ ∈ R2. (3.5)

The solution to the diffusion equation is then given in the Fourier domain by

û(ξ) =
f̂(ξ)

σ + |ξ|2
. (3.6)

It then remains to apply the inverse Fourier transform to the above equality to obtain
u(x). Since the inverse Fourier transform of a product is the convolution of the inverse
Fourier transforms (as in 1D), we deduce that

u(x) =
(
F−1 1

σ + |ξ|2
)
(x) ∗ f(x)

= CK0(
√

σ|x|) ∗ f(x),

where K0 is the modified Bessel function of order 0 of the second kind and C is a
normalization constant.
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This shows again how powerful Fourier analysis is to solve partial differential equa-
tions with constant coefficients. We could define mode general equations of the form

P (D)u(x) = f(x) x ∈ R2,

where P (D) is an operator with symbol P (iξ). In the case of the diffusion equation,
we would have that P (iξ) = σ + |ξ|2, i.e. P (iξ) is a parabolic symbol of order 2 using
the terminology of the preceding section. All we will see in this section applies to quite
general symbols P (iξ), although we shall consider only P (iξ) = σ + |ξ|2 to simplify.

Discretization. How do we solve (3.1) by finite differences? We can certainly replace
the differentials by approximated differentials as we did in 1D. This is the finite difference
approach. Let us consider the grid of points xij = (i∆x, j∆x) for i, j ∈ Z and ∆x > 0
given. We then define

Uij ≈ u(xij), fij = f(xij). (3.7)

Using a second-order scheme, we can then replace (3.1) by

−
(
∂x∂x + ∂y∂y

)
Uij + σUij = fij, (i, j) ∈ Z2, (3.8)

where the operator ∂x is defined by

∂xUij =
Ui+1,j − Uij

∆x
, (3.9)

and ∂x, ∂y, and ∂y are defined similarly.
Assuming as in the preceding section that the finite difference operator is defined in

the whole space R2 and not only on the grid {xij}, we have more generally that

BU(x) = f(x), x ∈ R2, (3.10)

where the operator B is a sum of translations defined by

BU(x) =
∑
β∈Iβ

bβU(x−∆xβ). (3.11)

Here, Iβ is a finite subset of Z2, i.e. β = (β1, β2), where β1 and β2 are integer. Upon
taking Fourier transform of (3.11), we obtain( ∑

β∈Iβ

bβe−i∆xβ·ξ
)
Û(ξ) = f̂(ξ). (3.12)

Defining

R∆(ξ) =
( ∑

β∈Iβ

bβe−i∆xβ·ξ
)
, (3.13)

we then obtain that the finite difference solution is given in the Fourier domain by

Û(ξ) =
1

R∆(ξ)
f̂(ξ), (3.14)
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and that the difference between the exact and the discrete solutions is given by

û(ξ)− Û(ξ) =
( 1

P (iξ)
− 1

R∆(ξ)

)
f̂(ξ). (3.15)

For the second-order scheme introduced above, we obtain

R∆(ξ) = σ +
2

∆x2

(
2− cos(∆xξx)− cos(∆xξy)

)
. (3.16)

For ∆x|ξ| ≤ π, we deduce from Taylor expansions that

|R∆(ξ)− P (iξ)| ≤ C∆x2|ξ|4.

For ∆x|ξ| ≥ π, we also obtain that

|R∆(ξ)| ≤ C

∆x2
≤ C∆x2|ξ|4,

and
|P (iξ)| ≤ C∆x2|ξ|4.

This implies that
|R∆(ξ)− P (iξ)| ≤ C∆x2|ξ|4

for all ξ ∈ R2. Since R∆(ξ) ≥ σ and P (iξ) ≥ C(1 + |ξ|2), we then easily deduce that∣∣∣R∆(ξ)− P (iξ)

R∆(ξ)P (iξ)

∣∣∣ ≤ C∆x2(1 + |ξ|2). (3.17)

From this, we deduce that

|û(ξ)− Û(ξ)| ≤ C∆x2(1 + |ξ|2)|f̂(ξ)|.

Let us now square the above inequality and integrate. Upon taking the square root of
the integrals, we obtain that

‖û(ξ)− Û(ξ)‖ ≤ C∆x2
( ∫

R2

(1 + |ξ|2)2|f̂(ξ)|2dξ
)1/2

. (3.18)

The above integral is bounded provided that f(x) ∈ H2(R2), using the definitions (2.67)-
(2.68), which also hold in two space dimensions. From the Parseval equality (equation
(2.53) with

√
2π replaced by 2π in two space dimensions), we deduce that

‖u(x)− U(x)‖ ≤ C∆x2‖f(x)‖H2(R2). (3.19)

This is the final result of this section: provided that the source term is sufficiently
regular (its second-order derivatives are square-integrable), the error made by the finite
difference approximation is of order ∆x2. The scheme is indeed second-order.

Exercise 3.1 Notice that the bound in (3.17) would be replaced by C∆x2(1 + |ξ|4) if
only the Taylor expansion were used. The reason why (3.17) holds is because the exact
symbol P (iξ) damps high frequencies (i.e. is bounded from below by C(1 + |ξ|2). Show
that if this damping is not used in the proof, the final result (3.19) should be replaced
by

‖u(x)− U(x)‖ ≤ C∆x2‖f(x)‖H4(R2).
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Exercise 3.2 (moderately difficult) Show that∣∣∣R∆(ξ)− P (iξ)

R∆(ξ)P (iξ)

∣∣∣ ≤ C∆xm(1 + |ξ|m),

for all 0 ≤ m ≤ 2. [Hint: Show that (R∆(ξ))−1 and (P (iξ))−1 are bounded and separate
|ξ|∆x ≥ 1 and |ξ|∆x ≤ 1].
Deduce that

‖u(x)− U(x)‖ ≤ C∆xm‖f(x)‖Hm(R2),

for 0 ≤ m ≤ 2. We deduce from this result that the error u(x)−U(x) still converges to
0 when f is less regular than H2(R2). However, the convergence is slower and no longer
of order ∆x2.

Exercise 3.3 Implement the Finite Difference algorithm in Matlab on a square of fi-
nite dimension (impose that the solution vanishes at the boundary of the domain). This
implementation is not trivial. It requires constructing and inverting a matrix as was
done in (2.79).
Solve the diffusion problem with a smooth function f and show that the order of con-
vergence is 2. Show that the order of convergence decreases when f is less regular.
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4 Finite Differences for Hyperbolic Equations

After parabolic and elliptic equations, we turn to the third class of important linear equa-
tions: hyperbolic equations. The simplest hyperbolic equation is the one-dimensional
transport equation

∂u

∂t
+ a

∂u

∂x
= 0 t > 0, x ∈ R

u(0, x) = u0(x), x ∈ R.
(4.1)

Here u0(x) is the initial condition. When a is constant, the solution to the above
equation is easily found to be

u(t, x) = u0(x− at). (4.2)

This means that the initial data is simply translated by a speed a. The solution can
also be obtained by Fourier transforms. Indeed we have

∂û

∂t
(t, ξ) + iaξû(t, ξ) = 0, (4.3)

which gives
û(t, ξ) = û0(ξ)e

−iatξ.

Now since multiplication by a phase in the Fourier domain corresponds to a translation
in the physical domain, we obtain (4.2).

Here is an important remark. Notice that (4.3) can be written as (2.40) with
P (iξ) = iaξ. Notice that this symbol does not have the properties imposed in sec-
tion 2. In particular, the symbol P (iξ) is purely imaginary (i.e. its real part vanishes).
This corresponds to a completely different behavior of the PDE solutions: instead of
regularizing initial discontinuities, as parabolic equations do, hyperbolic equations trans-
late and possibly modify the shape of discontinuities, but do not regularize them. This
behavior will inevitably show up when we discretize hyperbolic equations.

Let us now consider finite difference discretizations of the above transport equation.
The framework introduced in section 2 still holds. The single-step finite difference
scheme is given by (2.44). After Fourier transforms, it is defined by (2.49). The L2

norm of the difference between the exact and approximate solutions is then given by

‖u(n∆t, x)− Un(x)‖ =
1√
2π
‖εn(ξ)‖ =

1√
2π

∥∥(
e−n∆tP (iξ) −Rn

∆(ξ)
)
û0(ξ)

∥∥.

Here, we recall that P (iξ) = iaξ. The mathematical analysis of finite difference schemes
for hyperbolic equations is then not very different from for parabolic equations. Only
the results are very different: schemes that may be natural for parabolic equations will
no longer be so for hyperbolic schemes.

Stability. One of the main steps in controlling the error term εn is to show that the
scheme is stable. By stability, we mean here that

|Rn
∆(ξ)| = |R∆(ξ)|n ≤ C, n∆t ≤ T.
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Let us consider the stability of classical schemes. The first idea that comes to mind
to discretize (4.1) is to replace the time derivative by ∂t and the spatial derivative by
∂x. Spelling out the details, this gives

Un+1
j = Un

j −
a∆t

∆x
(Un

j+1 − Un
j ).

After Fourier transform (and extension of the scheme to the whole line x ∈ R), we
deduce that

R∆(ξ) = 1− ν(eiξ∆x − 1) = [1− ν(cos(ξ∆x)− 1)]− iν sin(ξ∆x),

where we have defined

ν =
a∆t

∆x
. (4.4)

We deduce that
|R∆(ξ)|2 = 1 + 2ν(1 + ν)(1− cos(ξ∆x)).

When a > 0, which implies that ν > 0, we deduce that the scheme is always unstable
since |R∆(ξ)|2 > 1 for cos(ξ∆x) ≤ 0 for instance. When ν < −1, we again deduce that
|R∆(ξ)|2 > 1 since ν(1+ν) > 0. It remains to consider −1 ≤ ν ≤ 0. There, ν(1+ν) ≤ 0
and we then deduce that |R∆(ξ)|2 ≤ 1 for all wavenumbers ξ. This implies stability.

So the scheme is stable if and only if −1 ≤ ν ≤ 0. This implies that |a|∆t ≤ ∆x.
Again, the time step cannot be chosen too large. This is referred to as a CFL condition.
Notice however, that this also implies that a < 0. This can be understood as follows. In
the transport equation, information propagates from the right to the left when a < 0.
Since the scheme approximates the spatial derivative by ∂x, it is asymmetrical and uses
some information to the right (at the point Xj+1 = Xj + ∆x) of the current point Xj.
For a < 0, it gets the correct information where it comes from. When a > 0, the scheme
still “looks” for information coming from the right, whereas physically it comes from
the left.

This leads to the definition of the upwind scheme, defined by

Un+1
j =

{
Un

j − ν(Un
j − Un

j−1) when a > 0

Un
j − ν(Un

j+1 − Un
j ) when a < 0.

(4.5)

Exercise 4.1 Check that the upwind scheme is stable provided that |a|∆t ≤ ∆x. Im-
plement the scheme in Matlab.

The above result shows that we have to “know” which direction the information
comes from to construct our scheme. For one-dimensional problems, this is relatively
easy since only the sign of a is involved. In higher dimensions, knowing where the
information comes from is much more complicated. A tempting solution to this difficulty
is to average over the operators ∂x and ∂x:

Un+1
j = Un

j −
ν

2
(Un

j+1 − Un
j−1).

Exercise 4.2 Show that the above scheme is always unstable. Verify the instability in
Matlab.
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A more satisfactory answer to the question has been answered by Lax and Wendroff.
The Lax-Wendroff scheme is defined by

Un+1
j =

1

2
ν(1 + ν)Un

j−1 + (1− ν2)Un
j −

1

2
ν(1− ν)Un

j+1. (4.6)

Exercise 4.3 Check that

|R∆(ξ)|2 = 1− 4ν2(1− ν2) sin4 ξ∆x

2
.

Deduce that the Lax-Wendroff scheme is stable when |ν| ≤ 1.
Implement the Lax-Wendroff scheme in Matlab.

Consistency. We have introduced two stable schemes, the upwind scheme and the
Lax-Wendroff scheme. It remains to analyze their convergence properties.

Consistency consists of analyzing the local properties of the discrete scheme and
making sure that the scheme captures the main trends of the continuous equation. So
assuming that u(n∆t,Xj) is known at time n∆t, we want to see what it becomes under
the discrete scheme. For the upwind scheme with a > 0 to simplify, we want to analyze(

∂t + a∂x

)
u(Tn, Xj).

The closer the above quantity to 0 (which it would be if the discrete scheme were replaced
by the continuous equation), the higher the order of convergence of the scheme. This
error is obtained assuming that the exact solution is sufficiently regular and by using
Taylor expansions.

Exercise 4.4 Show that(
∂t + a∂x

)
u(Tn, Xj) = −1

2
(1− ν)a∆x

∂2u

∂x2
(Tn, Xj) + O(∆x2).

This shows that the upwind scheme is first-order when ν < 1. Notice that first-order
approximations involve second-order derivatives of the exact solution. This is similar to
the parabolic case and justifies the following definition in the Fourier domain (remember
that second-order derivative in the physical domain means multiplication by −ξ2 in the
Fourier domain).

We say that the scheme is convergent of order m if

|e−i∆tP (iξ) −R∆(ξ)| ≤ C∆t∆xm(1 + |ξ|m+1), (4.7)

for ∆t and ∆x|ξ| sufficiently small (say ∆x|ξ| ≤ π). Notice that ∆t and ∆x are again
related through (4.4).

Notice the parallel with (2.61): we have simply replaced M by 1. The difference
between parabolic and hyperbolic equations and scheme does not come from the consis-
tency conditions, but from the stability conditions. For hyperbolic schemes, we do not
have (2.57) or (2.58).

Exercise 4.5 Show that the upwind scheme is first-order and the Lax-Wendroff scheme
is second-order.
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Proof of convergence . As usual, stability and consistency of the scheme, with
sufficient regularity of the exact solution, are the ingredients to the convergence of the
scheme. As in the parabolic case, we treat low and high wavenumbers separately. For
low wavenumbers (∆x|ξ| ≤ π), we have

εn(ξ) = (e−∆tP (iξ) −R∆(ξ))
n−1∑
k=0

e−(n−1−k)∆tP (iξ)Rk
∆(ξ)û0(ξ).

Here is the main difference with the parabolic case: e−(n−1−k)∆tP (iξ) and Rk
∆(ξ) are

bounded but not small for high frequencies (notice that |e−n∆tP (iξ)| = 1 for P (iξ) = iaξ).
So using the stability of the scheme, which states that |Rk

∆(ξ)| ≤ 1, we deduce that

|εn(ξ)| ≤ n|e−∆tP (iξ) −R∆(ξ)||û0(ξ)| ≤ C∆xm(1 + |ξ|m+1)|û0(ξ)|,

using the order of convergence of the scheme.
For high wavenumbers ∆x|ξ| ≥ π, we deduce that

|εn(ξ)| ≤ 2|û0(ξ)| ≤ C∆xm(1 + |ξ|m+1)|û0(ξ)|.

So the above inequality holds for all frequencies ξ ∈ R. This implies that

‖εn(ξ)‖ ≤ C∆xm
( ∫

R
(1 + |ξ|2m+2)|û0(ξ)|2dξ

)1/2

.

We have then proved the

Theorem 4.1 Let us assume that P (iξ) = iaξ and that R∆(ξ) is of order m, i.e. (4.7)
holds. Assuming that the initial condition u0 ∈ Hm+1, we obtain that

‖u(n∆t, x)− Un(x)‖ ≤ C∆xm‖u0‖Hm+1 , for all 0 ≤ n ≤ N = T/∆t. (4.8)

The main difference with the parabolic case is that u0 now needs to be in Hm+1 (and
not in Hm) to obtain an accuracy of order ∆xm. What if u0 is not in Hm?

Exercise 4.6 Show that for any scheme of order m, we have

|e−i∆tP (iξ) −R∆(ξ)| ≤ C∆t∆xαm(1 + |ξ|α(m+1))

for all 0 ≤ α ≤ 1 and |ξ|∆x ≤ π. Show that (4.8) is now replaced by

‖u(n∆t, x)− Un(x)‖ ≤ C∆xαm‖u0‖Hα(m+1) , for all 0 ≤ n ≤ N = T/∆t. (4.9)

Deduce that if u0 is in Hs for 0 ≤ s ≤ m + 1, the error of convergence of the scheme
will be of order sm

m+1
.

We recall that piecewise constant functions are in the space Hs for all s < 1/2 (take
s = 1/2 in the sequel to simplify). Deduce the order of the error of convergence for the
upwind scheme and the Lax-Wendroff scheme. Verify this numerically.
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5 Spectral methods

5.1 Unbounded grids and semidiscrete FT

The material of this section is borrowed from chapters 1 & 2 in Trefethen [2].
Finite differences were based on approximating

∂

∂x

by finite differences of the form
∂x, ∂x

for first-order approximations, or
1

2
(∂x + ∂x),

for a second-order approximation, and so on for higher order approximations.
Spectral methods are based on using an approximation of very high order for the

partial derivative. In matrix form, the second-order approximation given by (1.2) and
fourth-order approximation given by (1.3) in [2] are replaced in the “spectral” approxi-
mation by the “infinite-order” matrix in (1.4).

How is this done? The main ingredient is “interpolation”. We interpolate a set of
values of a function at the points of a grid by a (smooth) function defined everywhere.
We can then obviously differentiate this function and take the values of the differentiated
function at the grid points. This is how derivatives are approximated in spectral methods
and how (1.4) in [2] is obtained.

Let us be more specific and consider first the infinite grid hZ with grid points xj = jh
for j ∈ Z and h > 0 given.

Let us assume that we are given the values vj of a certain function v(x) at the grid
points, i.e. v(xj) = vj. What we want is to define a function p(x) such that p(x) = vj.
This function p(x) will then be an interpolant of the series {vj}. To do so we define the
semidiscrete Fourier transform as

v̂(k) = h
∞∑

j=−∞

e−ikxjvj, k ∈ [−π

h
,
π

h
]. (5.1)

It turns out that this transform can be inverted. We define the inverse semidiscrete
Fourier transform as

vj =
1

2π

∫ π/h

−π/h

eikxj v̂(k)dk. (5.2)

The above definitions are nothing but the familiar Fourier series. Here, vj are the Fourier

coefficients of the periodic function v̂(k) on [−π

h
,
π

h
].

Exercise 5.1 Check that v̂(k) in (5.1) is indeed periodic of period 2π/h.

It is then well known that the function v̂(k) can be reconstructed from its Fourier
coefficients; this is (5.1).
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Notice now that the inverse semidiscrete Fourier transform (a.k.a. Fourier series) in
(5.2) is defined for every xj of the grid hZ, but could be defined more generally for every
point x ∈ R. This is how we define our interpolant, by simply replacing xj in (5.2) by
x:

p(x) =
1

2π

∫ π/h

−π/h

eikxv̂(k)dk. (5.3)

The function p(x) is a very nice function. It can be shown that it is analytic (which
means that the infinite Taylor expansion of p(z) in the vicinity of every complex number
z converges to p; so the function p is infinitely many times differentiable), and by
definition it satisfies that p(xj) = vj.

Now assuming that we want to define wj, an approximation of the derivative of v
given by vj at the grid points xj. The spectral approximation simply consists of defining

wj = p′(xj), (5.4)

where p(x) is defined by (5.3). Notice that wj a priori depends on all the values vj. This
is why the matrix (1.4) in [2] is infinite and full.

How do we calculate this matrix? Here we use the linearity of the differentiation. If

vj = v
(1)
j + v

(2)
j ,

then we clearly have that
wj = w

(1)
j + w

(2)
j ,

for the spectral differentials. So all we need to do is to consider the derivative of function
vj such that vn = 1 for some n ∈ Z and vm = 0 for m 6= n. We then obtain that

v̂n(k) = he−inkh,

and that

pn(x) =
h

2π

∫ π/h

−π/h

eik(x−nh)dk = Sh(x− nh),

where Sh(x) is the sinc function

Sh(x) =
sin(πx/h)

πx/h
. (5.5)

More generally, we obtain that the interpolant p(x) is given by

p(x) =
∞∑

j=−∞

vjSh(x− jh). (5.6)

An easy calculation shows that

S ′
h(jh) =

 0, j = 0
(−1)j

jh
, j 6= 0.

(5.7)
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Exercise 5.2 Check this.

This implies that

p′n(xj) =


0, j = n

(−1)(j−n)

(j − n)h
, j 6= n.

These are precisely the values of the entries (n, j) of the matrix in (1.4) in [2].
Notice that the same technique can be used to define approximations to derivatives

of arbitrary order. Once we have the interpolant p(x), we can differentiate it as many
times as necessary. For instance the matrix corresponding to second-order differentiation
is given in (2.14) of [2].

5.2 Periodic grids and Discrete FT

The simplest way to replace the infinite-dimensional matrices encountered in the pre-
ceding section is to assume that the initial function v is periodic. To simplify, it will be
2π periodic. The function is then represented by its value at the points xj = 2πj/N for
some N ∈ N, so that h = 2π/N . We also assume that N is even. Odd values of N are
treated similarly, but the formulas are slightly different.

We know that periodic functions are represented by Fourier series. Here, the function
is not only periodic, but also only given on the grid (x1, · · · , xN). So it turns out that
its “Fourier series” is finite. This is how we define the Discrete Fourier transform

v̂k = h
N∑

j=1

e−ikxjvj, k = −N

2
+ 1, . . . ,

N

2
. (5.8)

The Inverse Discrete Fourier Transform is then given by

vj =
1

2π

N/2∑
k=−N/2+1

eikxj v̂k, j = 1, . . . , N. (5.9)

The latter is recast as

vj =
1

2π

N/2∑′

k=−N/2

eikxj v̂k, j = 1, . . . , N. (5.10)

Here we define v̂−N/2 = v̂N/2 and
∑′

means that the terms k = ±N/2 are multiplied

by 1
2
. The latter definition is more symmetrical than the former, although both are

obviously equivalent. The reason we introduce (5.10) is that the two definitions do not
yield the same interpolant, and the interpolant based on (5.10) is more symmetrical.

As we did for infinite grids, we can extend (5.10) to arbitrary values of x and not
only the values on the grid. The discrete interpolant is now defined by

p(x) =
1

2π

N/2∑′

k=−N/2

eikxv̂k, x ∈ [0, 2π]. (5.11)
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Notice that this interpolant is obviously 2π periodic, and is a trigonometric polynomial
of order (at most) N/2.

We can now easily obtain a spectral approximation of v(x) at the grid points: we
simply differentiate p(x) and take the values of the solution at the grid points. Again,
this corresponds to

wj = p′(xj), j = 1, . . . , N.

Exercise 5.3 Calculate the N×N matrix DN which maps the values vj of the function
v(x) to the values wj of the function p′(xj). The result of the calculation is given on
p.21 in [2].

5.3 Fast Fourier Transform (FFT)

In the preceding subsections, we have seen how to calculate spectral derivatives at grid
points wj of a function defined by vj at the same gridpoints. We have also introduced
matrices that map vj to wj. Our derivation was done in the physical domain, in the sense
that we have constructed the interpolant p(x), taken its derivative, p′ and evaluated the
derivative p′(xj) at the grid points. Another way to consider the derivation is to see
what it means to “take a derivative” in the Fourier domain. This is what FFT is based
on.

Remember that (classical) Fourier transforms replace derivation by multiplication
by iξ; see (2.27). The interpolations of the semidiscrete and discrete Fourier transforms
have very similar properties. For instance we deduce from (5.3) that

p′(x) =
1

2π

∫ π/h

−π/h

eikxikv̂(k)dk.

So again, in the Fourier domain, differentiation really means replacing v̂(k) by ikv̂(k).
For the discrete Fourier transform, we deduce from (5.11) that

p′(x) =
1

2π

N/2∑′

k=−N/2

eikxikv̂k.

Notice that by definition, we have v̂−N/2 = v̂N/2 so that i(−N/2)v̂−N/2 + iN/2v̂N/2 = 0.
In other words, we have

p′(x) =
1

2π

N/2−1∑′

k=−N/2+1

eikxikv̂k.

This means that the Fourier coefficients v̂k are indeed replaced by ikv̂k when we differ-
entiate p(x), expect for the value of k = N/2, for which the Fourier coefficient vanishes.

So, to calculate wj from vj in the periodic case, we have the following procedure

1. Calculate v̂k from vj for −N/2 + 1 ≤ k ≤ N/2.

2. Define ŵk = ikv̂k for −N/2 + 1 ≤ k ≤ N/2− 1 and ŵN/2 = 0.

3. Calculate wj from ŵj by Inverse Discrete Fourier transform.
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Said in other words, the above procedure is the discrete analog of the formula

f ′(x) = F−1
ξ→x

[
iξFx→ξ[f(x)]

]
.

On a computer, the multiplication by ik (step 2) is fast. The main computational
difficulties come from the implementation of the discrete Fourier transform and its in-
version (steps 1 and 3). A very efficient implementation of steps 1 and 3 is called the
FFT, the Fast Fourier Transform. It is an algorithm that performs steps 1 and 3 in
O(N log N) operations. This has to be compared with a number of operations of order
O(N2) if the formulas (5.8) and (5.9) are being used.

Exercise 5.4 Check the order O(N2).

We are not going to describe how FFT works; let us merely state that it is a very
convenient alternative to constructing the matrix DN to calculate the spectral derivative.
We refer to [2] Programs 4 and 5 for details.

5.4 Spectral approximation for unbounded grids

We have introduced several interpolants to obtain approximations of the derivatives of
functions defined by their values on a (discrete) grid. It remains to know what sort of
error one makes by introducing such interpolants. Chapter 4 in [2] gives some answer to
this question. Here we shall give a slightly different answer based on the Sobolev scale
introduced in the analysis of finite differences.

Let u(x) be a function defined for x ∈ R and define vj = u(xj). The Fourier transform
of u(x) is denoted by û(k). We then define the semidiscrete Fourier transform v̂(k) by
(5.1) and the interpolant p(x) by (5.3).

The question is then: what is the error between u(x) and p(x)? The answer relies
on one thing: how regular is u(x). The analysis of the error is based on estimates in the
Fourier domain. Smooth functions u(x) correspond to functions û(k) that decay fast in
k.

The first theoretical ingredient, which is important in its own right, is the aliasing
formula, also called the Poisson summation formula.

Theorem 5.1 Let u ∈ L2(R) be sufficiently smooth. Then for all k ∈ [−π/h, π/h],

v̂(k) =
∞∑

j=−∞

û
(
k +

2πj

h

)
. (5.12)

In other words the aliasing formula relates the discrete Fourier transform v̂(k) to the
continuous Fourier transform û(k).
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Derivation of the aliasing formula. We write

v̂(k) = h
∞∑

j=−∞

e−ikhjvj

=
∞∑

j=−∞

∫
R

û(k′)eihj(k′−k)hdk′

2π

=

∫
R

û(k +
2πl

h
)

∞∑
j=−∞

ei2πljdl,

using the change of variables h(k′ − k) = 2πl so that hdk′ = 2πdl. We will show that

∞∑
j=−∞

ei2πlj =
∞∑

j=−∞

δ(l − j). (5.13)

Assuming that this equality holds, we then obtain that

v̂(k) =

∫
R

û(k +
2πl

h
)

∞∑
j=−∞

δ(l − j)dl =
∞∑

j=−∞

û(k +
2πj

h
),

which is what was to be proved. It thus remains to show (5.13). Here is a simple
explanation. Take the Fourier series of a 1−periodic function f(x)

cn =

∫ 1/2

−1/2

e−i2πnxf(x)dx.

Then the inversion is given by

f(x) =
∞∑

n=−∞

ei2πnxcn.

Now take f(x) to be the delta function f(x) = δ(x). We then deduce that we have
cn = 1 and for x ∈ (0, 1),

∞∑
n=−∞

ei2πnx = δ(x).

Let us now extend both sides of the above relation by periodicity to the whole line R.
The left-hand side is a 1-periodic in x and does not change. The right hand side now
takes the form

∞∑
j=−∞

δ(x− j).

This is nothing but the periodic delta function. This proves (5.13).
Now that we have the aliasing formula, we can analyze the difference u(x) − p(x).

We’ll do it in the L2 sense, since

‖u(x)− p(x)‖L2(R) =
1√
2π
‖û(k)− p̂(k)‖L2(R). (5.14)

We now show the following result:
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Theorem 5.2 Let us assume that u(x) ∈ Hm(R) for m > 1/2. Then we have

‖u(x)− p(x)‖L2(R) ≤ Chm‖u‖Hm(R), (5.15)

where the constant C is independent of h and u.

Proof. We first realize that
p̂(k) = χ(k)v̂(k)

by construction, where χ(k) = 1 if k ∈ [−π/h, π/h] and χ(k) = 0 otherwise is the
characteristic function of the interval [−π/h, π/h]. In other words, p(x) is band-limited,
i.e. has no high frequencies. We thus deduce that∫

R
|û(k)− p̂(k)|2dk =

∫
R
(1− χ(k))|û(k)|2dk +

∫ π/h

−π/h

∣∣∣ ∑
j∈Z∗

û
(
k +

2πj

h

)∣∣∣2dk,

using (5.12). We have denoted by Z∗ = Z\{0}. Looking carefully at the above terms,
one realizes that the above error only involves û(k) for values of k outside the interval
[−π/h, π/h]. In other words, if û(k) has compact support inside [−π/h, π/h], then
p̂(k) = û(k), hence p(x) = u(x) and the interpolant is exact. When û(k) does not vanish
outside [−π/h, π/h], i.e. when the high frequency content is present, we have to use the
regularity of the function u(x) to control the above term. This is what we now do. The
first term is easy to deal with. Indeed we have∫

R
(1− χ(k))|û(k)|2dk ≤ h2m

∫
R
(1 + k2m)|û(k)|2dk ≤ h2m‖u‖2Hm(R).

This is simply based on realizing that |hk| ≥ π when χ(k) = 1. The second term is a
little more painful. The Cauchy-Schwarz inequality tells us that∣∣∣ ∑

j

ajbj

∣∣∣2 ≤∑
j

|aj|2
∑

j

|bj|2.

This is a mere generalization of |x · y| ≤ |x||y|. Let us choose

aj =
∣∣∣û(

k +
2πj

h

)∣∣∣(1 + |k +
2πj

h
|
)m

, bj =
(
1 + |k +

2πj

h
|
)−m

We thus obtain that∣∣∣ ∑
j∈Z∗

û
(
k +

2πj

h

)∣∣∣2 ≤ ∑
j∈Z∗

∣∣∣û(
k +

2πj

h

)∣∣∣2(1 + |k +
2πj

h
|
)2m ∑

j∈Z∗

(
1 + |k +

2πj

h
|
)−2m

.

Notice that∑
j∈Z∗

(
1 + |k +

2πj

h
|
)−2m

≤ h2m
∑
j∈Z∗

1

(2π(1 + |j|))2m
, for |k| ≤ π/h.

For m > 1/2, the above sum is convergent so that∑
j∈Z∗

(
1 + |k +

2πj

h
|
)−2m

≤ Ch2m,
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where C depends on m but not on u or h. This implies that∫ π/h

−π/h

∣∣∣ ∑
j∈Z∗

û
(
k +

2πj

h

)∣∣∣2dk ≤ Ch2m

∫ π/h

−π/h

∑
j∈Z∗

∣∣∣û(
k +

2πj

h

)∣∣∣2(1 + |k +
2πj

h
|
)2m

≤ Ch2m

∫
R
|û(k)|2(1 + |k|)2mdk = Ch2m‖u‖2Hm .

This concludes the proof of the theorem.
Let us emphasize something we saw in the course of the above proof. When u(x)

is band-limited so that û(k) = 0 outside [−π/h, π/h], we have that the interpolant is
exact; namely p(x) = u(x). However, we have seen that the interpolant is determined
by the values vj = u(xj).

More precisely, we saw that

p(x) =
∞∑

n=−∞

vnSh(x− nh),

where Sh is the sinc function defined in (5.5). This proves the extremely important
Shannon-Whittaker sampling theorem:

Theorem 5.3 Let us assume that the function u(x) is such that û(k) = 0 for k outside
[−π/h, π/h]. Then u(x) is completely determined by its values vj = u(hj) for j ∈ Z.
More precisely, we have

u(x) =
∞∑

n=−∞

u(hj)Sh(x− jh), Sh(x) =
sin(πx/h)

πx/h
. (5.16)

This result has quite important applications in communication theory. Assuming that
a signal has no high frequencies (such as in speech, since the human ear cannot detect
frequencies above 25kHz), there is an adapted sampling value h such that the signal can
be reconstructed from the values it takes on the grid hZ. This means that a continuous
signal can be compressed onto a discrete grid with no error. When h is chosen too large
so that frequencies above π/h are present in the signal, then the interpolant is not exact,
and the compression in the signal has some error. This error is precisely called aliasing
error and is quantified by Theorem 5.1.

Let us finish this section by an analysis of the error between the derivatives of u(x)
and those of p(x). Remember that our initial objective is to obtain an approximation
of u′(xj) by using p′(xj). Minor modifications in the proof of Theorem 5.2 yield the
following result:

Theorem 5.4 Let us assume that u(x) ∈ Hm(R) for m > 1/2 and let n ≤ m. Then
we have

‖u(n)(x)− p(n)(x)‖L2(R) ≤ Ch(m−n)‖u‖Hm(R), (5.17)

where the constant C is independent of h and u.

The proof of this theorem consists of realizing that

‖u(n)(x)− p(n)(x)‖L2(R) =
1√
2π
‖(ik)n(û(k)− p̂(k))‖L2(R).
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Moreover we have∫
R
|k|2n|û(k)− p̂(k)|2dk =

∫
R
|k|2n(1− χ(k))|û(k)|2dk

+

∫ π/h

−π/h

|k|2n
∣∣∣ ∑

j∈Z∗
û
(
k +

2πj

h

)∣∣∣2dk.

The first term on the right hand side is bounded by

h2(m−n)

∫
(1 + k2m)|û(k)|2dk =

(
hm−n‖u‖Hm

)2

.

The second term is bounded by

h−2n

∫ π/h

−π/h

∣∣∣ ∑
j∈Z∗

û
(
k +

2πj

h

)∣∣∣2dk,

which is bounded, as we saw in the proof of Theorem 5.2 by h−2nh2m‖u‖2Hm . This proves
the theorem.

This result is important for us: it shows that the error one makes by approximating
a n−th order derivative of u(x) by using p(n)(x) is of order hm−n, where m is the Hm-
regularity of u. So when u is very smooth, p(n)(x) converges extremely fast to u(n)(x)
as N →∞. This is the greatest advantage of spectral methods.

5.5 Application to PDE’s

An elliptic equation. Consider the simplest of elliptic equations

−u′′(x) + σu(x) = f(x), x ∈ R, (5.18)

where the absorption σ > 0 is a constant positive parameter. Define α =
√

σ. We verify
that

G(x) =
1

2α
e−α|x|, (5.19)

is the Green function of the above problem, whose solution is thus

u(x) =

∫
R

G(x− y)f(y)dy =
1

2α

∫
R

e−α|x−y|f(y)dy. (5.20)

Note that this may also be obtained in the Fourier domain, where

û(ξ) =
f̂(ξ)

σ + ξ2
. (5.21)

Discretizing the above equation using the second-order finite difference method:

−U(x + h) + U(x− h)− 2U(x)

h2
+ U(x) = f(x), (5.22)

we obtain as in (3.19) in section 3 an error estimate of the form

‖u− U‖L2 ≤ C h2 ‖f‖H2 . (5.23)
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Let us now compare this result to the discretization based on the spectral method.
Spectral methods are based on replacing functions by their spectral interpolants. Let
p(x) be the spectral interpolant of u(x) and F (x) the spectral interpolant of the source
term f(x). Now p(x) and F (x) only depend on the values they take at hj for j ∈ Z.
We may now calculate the second-order derivative of p(x) (see the following paragraph
for an explicit expression). The equation we now use to deduce p(x) from F (x) is the
equation (5.18):

−p′′(x) + σp(x) = F (x), x ∈ R.

Note that this problem may be solved by inverting a matrix of the form −N2 + σI,
where N is the matrix of differentiation. The error u− p now solves the equation

−(u− p)′′(x) + σ(u− p) = (f − F )(x).

Looking at this in the Fourier domain (and coming back) we easily deduce that

‖u− p‖H2(R) ≤ C‖f − F‖L2(R) ≤ Chm‖f‖Hm(R), (5.24)

where the latter equality comes from Theorem 5.2. Here m is arbitrary provided that f
is arbitrarily smooth. We thus obtain that the spectral method has an “infinite” order
of accuracy, unlike finite difference methods. When the source terms and the solutions
of the PDEs we are interested in are smooth (spatially), the convergence properties of
spectral methods are much better than those of finite difference methods.

A parabolic equation. Let us now apply the above theory to the computation of
solutions of the heat equation

∂u

∂t
− ∂2u

∂x2
= 0,

on the real line R. We introduce Un
j the approximate solution at time Tn = n∆t,

1 ≤ n ≤ N and point xj = hj for j ∈ Z.
Let us consider the Euler explicit scheme based on a spectral approximation of the

spatial derivatives. The interpolant at time Tn is given by

pn(x) =
∞∑

j=−∞

Un
j Sh(x− jh),

so that the approximation to the second derivative is given by

(pn)′′(kh) =
∞∑

j=−∞

S ′′
h((k − j)h)Un

j =
∞∑

j=−∞

S ′′
h(jh)Un

k−j.

So the Euler explicit scheme is given by

Un+1
j − Un

j

∆t
=

∞∑
k=−∞

S ′′
h(kh)Un

j−k. (5.25)

It now remains to see how this scheme behaves. We shall only consider stability here
(i.e. see how ∆t and h have to be chosen so that the discrete solution does not blow
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up as n→ T/∆t). As far as convergence is concerned, the scheme will be first order in
time (accuracy of order ∆t) and will be of spectral accuracy (infinite order) provided
that the initial solution is sufficiently smooth. This is plausible from the analysis of the
error made by replacing a function by its interpolant that we made earlier.

Let us come back to the stability issue. As we did for finite differences, we realize
that we can look at a scheme defined for all x ∈ R and not only x = xj:

Un+1(x)− Un(x)

∆t
=

∞∑
k=−∞

S ′′
h(kh)Un(x− hk). (5.26)

Once we have realized this, we can pass to the Fourier domain and obtain that

Ûn+1(ξ) =
[
1 + ∆t

∞∑
k=−∞

S ′′
h(kh)e−ikhξ

]
Ûn(ξ). (5.27)

So the stability of the scheme boils down to making sure that

R(ξ) = 1 + ∆t
∞∑

k=−∞

S ′′
h(kh)e−ikhξ, (5.28)

stays between −1 and 1 for all frequencies ξ.
The analysis is more complicated than for finite differences because of the infinite

sum that appears in the definition of R. Here is a way to analyze R(ξ). We first realize
that

S ′′
h(kh) =


−π2

3h2
k = 0

2
(−1)k+1

h2k2
k 6= 0.

Exercise 5.5 Check this.

So we can recast R(ξ) as

R(ξ) = 1−∆t
π2

3h2
− 2∆t

h2

∑
k 6=0

ei(hξ−π)k

k2
.

Exercise 5.6 Check this.

We now need to understand the remaining infinite sum. It turns out that we can have
access to an exact formula. It is based on using the Poisson formula∑

j

ei2πlj =
∑

j

δ(l − j),

which we recast for l ∈ [−1/2, 1/2] as∑
j 6=0

ei2πlj = δ(l)− 1.
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Notice that both terms have zero mean on [−1/2, 1/2] (i.e. there is no 0 frequency). We
now integrate these terms in l. We obtain that∑

j 6=0

ei2πlj

i2πj
= H(l)− l − d0,

where H(l) is the Heaviside function, such that H(l) = 1 for l > 0 and H(l) = 0 for
l < 0. The constant d0 is now fixed by making sure that the above right-hand side
remains 1-periodic (as is the left-hand side). Another way of looking at it is to make
sure that both sides have zero mean on (−1/2, 1/2). We thus find that d0 = 1/2.

Exercise 5.7 Check this.

Let us integrate one more time. We now obtain that∑
j 6=0

ei2πlj

−4π2j2
= lH(l)− l2

2
− l

2
− d1,

where d1 is again chosen so that the right-hand side has zero mean. We obtain that
d1 = 1/12.

Exercise 5.8 Check this.

To sum up our calculation, we have obtained that∑
j 6=0

ei2πlj

j2
= 4π2

( l2

2
+

1

12
− l

(
H(l)− 1

2

))
.

This shows that

R(ξ) = 1− ∆t

h2

(π2

3
+ 8π2

( l2

2
+

1

12
− l

(
H(l)− 1

2

)))
, l =

hξ

2π
− 1

2
. (5.29)

A plot of the function l → l2/2 + 1/12 − l(H(l) − 1/2) is given in Fig. 5.1. Notice
that this function is 1-periodic and continuous. This is justified as the delta function
is concentrated at one point, its integral is a piecewise linear function (H(l)− 1/2− l)
and is discontinuous, and its second integral is continuous (and is piecewise quadratic).

Exercise 5.9 Check that l(H(l)− 1
2
) = 1

2
|l|. Deduce that

R(ξ) = 1− ∆t

h2
π2

(
1 + 4l(1− |l|)

)
,

so that

R(ξ) = 1− ∆t

h2
h2ξ2 := 1−∆tξ2, 0 ≤ |ξ| ≤ π

h
.

[Check the above for hξ ≤ π and use (5.28) to show that R(ξ) = R(−ξ) and that R(ξ)
is 2π

h
-periodic.]
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Figure 5.1: Plot of the function l → f(l) = l2/2 + 1/12− l(H(l)− 1/2). The maximal
value is 1/12 and the minimal value −1/24.

Since R(ξ) is a periodized version of the symbol 1−∆tξ2, we deduce that

1− π2 ∆t

h2
≤ R(ξ) ≤ 1,

and that the minimal value is reached for l = 0, i.e. for frequencies

ξ =
2π

h
(m +

1

2
), m ∈ Z,

and that the maximum is reached for l = ±1/2, i.e. for frequencies

ξ =
2πm

h
, m ∈ Z.

Notice that R(0) = 0 as it should, and that R(π/h) = 1 − π2∆t/h2, which is a quite
bad approximation of e−∆tπ2/(h2) for the exact solution. But as usual, we do not expect
frequencies of order h−1 to be well approximated on a grid of size h.

Since we need |R(ξ)| ≤ 1 for all frequencies to obtain a stable scheme, we see that

λ =
∆t

h2
≤ 2

π2
, (5.30)

is necessary to obtain a convergent scheme as h→ 0 with λ fixed.
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6 Introduction to finite element methods

We now turn to one of the most useful methods in numerical simulations: the finite
element method. This will be very introductory. The material mostly follows the
presentation in [1].

6.1 Elliptic equations

Let Ω be a convex open domain in R2 with boundary ∂Ω. We will assume that ∂Ω is
either sufficiently smooth or a polygon. On Ω we consider the boundary value problem

−∆u(x) + σ(x)u(x) = f(x), x = (x1, x2) ∈ Ω

u(x) = 0, x ∈ ∂Ω.
(6.1)

The Laplace operator ∆ is defined as

∆ =
∂2

∂x1
2

+
∂2

∂x2
2
.

We assume that the absorption coefficient σ(x) ∈ L∞(Ω) satisfies the constraint

σ(x) ≥ σ0 > 0, x ∈ Ω̄. (6.2)

We also assume that the source term f ∈ L2(Ω) (i.e., is square integrable).
This subsection is devoted to showing the existence of a solution to the above problem

and recalling some elementary properties that will be useful in the analysis of discretized
problems.

Let us first assume that there exists a sufficiently smooth solution u(x) to (6.1).
Let v(x) be a sufficiently smooth test function defined on Ω and such that v(x) = 0
for x ∈ ∂Ω. Upon multiplying (6.1) by v(x) and integrating over Ω, we obtain by
integrations by parts using Green’s formula that:

a(u, v) :=

∫
Ω

(
∇u · ∇v + σuv

)
dx =

∫
Ω

fvdx := L(v). (6.3)

Exercise 6.1 Prove the above formula.

Let us introduce a few Hilbert spaces. For k ∈ N, we define

Hk(Ω) ≡ Hk =
{

v ∈ L2(Ω); Dαv ∈ L2(Ω), for all |α| ≤ k}. (6.4)

We recall that for a multi-index α = (α1, α2) (in two space dimensions) for αk ∈ N,
1 ≤ k ≤ 2, we denote |α| = α1 + α2 and

Dα =
∂α1

∂xα1
1

∂α2

∂xα2
2

.

Thus v ∈ Hk ≡ Hk(Ω) if all its partial derivatives of order up to k are square integrable
in Ω. The Hilbert space is equipped with the norm

‖u‖Hk =
( ∑
|α|≤k

‖Dαu‖2L2

)1/2

. (6.5)
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We also define the semi-norm on Hk:

|u|Hk =
( ∑
|α|=k

‖Dαu‖2L2

)1/2

. (6.6)

Note that the above semi-norm is not a norm, for all polynomials pk−1 of order at most
k − 1 are such that |pk−1|Hk = 0.

Because of the choice of boundary conditions in (6.1), we also need to introduce the
Hilbert space

H1
0 (Ω) =

{
v ∈ H1(Ω); v|∂Ω = 0

}
. (6.7)

We can show that the above space is a closed subspace of H1(Ω), where both spaces
are equipped with the norm ‖ · ‖H1 . Showing this is not completely trivial and requires
understanding the operator that restricts a function defined on Ω to the values it takes
at the boundary ∂Ω. The restriction is defined for sufficiently smooth functions only
(being an element in H1 is sufficient, not necessary). For instance: “the restriction to
∂Ω of a function in L2(Ω)” means nothing. This is because L2 functions are defined
up to modifications on sets of measure zero (for the Lebesgue measure) and that ∂Ω is
precisely a set of measure zero.

We can show that (6.3) holds for any function v ∈ H1
0 (Ω). This allows us to “replace”

the problem (6.1) by the new problem in variational form:

Find u ∈ H1
0 (Ω) such that for all v ∈ H1

0 (Ω), we have

a(u, v) = L(v). (6.8)

Theorem 6.1 There is a unique solution to the above problem (6.8).

Proof. The theorem is a consequence of the Riesz representation theorem. The main
ingredients of the proof are the following. First, note that a(u, v) is a symmetric bilinear
form on the Hilbert space V = H1

0 (Ω). It is clearly linear in u and v and one verifies
that a(u, v) = a(v, u).

The bilinear form a(u, v) is also positive definite, in the sense that a(v, v) > 0 for all
v ∈ V such that v 6= 0. Indeed, a(u, v) is even better than this: it is coercive in V , in
the sense that there exists α > 0 such that

a(u, u) ≥ α‖u‖2V , for all v ∈ V. (6.9)

Indeed, from the definition of a(u, v) and the constraint on σ, we can choose α =
min(1, σ0).

Since a(u, v) is a symmetric, positive definite, bilinear form on V , it defines an inner
product on V (by definition of an inner product). The norm associated to this inner
product is given by

‖u‖a = a1/2(u, u), u ∈ V. (6.10)

The Riesz representation theorem then precisely states the following: Let V a Hilbert
space with an inner product a(·, ·). Then for each bounded linear form L on V , there is
a unique u ∈ V such that L(v) = a(u, v) for all v ∈ V . Theorem 6.1 is thus equivalent
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to showing that L(v) is bounded on V , which means the existence of a constant ‖L‖V ∗

such that |L(v)| ≤ ‖L‖V ∗a1/2(v, v) for all v ∈ V . However we have

|L(v)| ≤ ‖f‖L2‖v‖L2 =
‖f‖L2

√
σ0

(
√

σ0‖v‖L2) ≤ ‖f‖L
2

√
σ0

a1/2(v, v).

This yields the bound for L and the existence of a solution to (6.8). Now assume that u
and w are solutions. Then by taking differences in (6.8), we deduce that a(u−w, v) = 0
for all v ∈ V . Choose now v = u−w to get that a(u−w, u−w) = 0. However, since a
is positive definite, this implies that u− w = 0 and the uniqueness of the solution.

Remark 6.2 The solution to the above problem admits another interpretation. Indeed
let us define the functional

J(u) =
1

2
a(u, u)− L(u). (6.11)

We can then show that u is a solution to (6.8) is equivalent to u being the minimum of
J(u) on V = H1

0 .

Remark 6.3 Theorem 6.1 admits a very simple proof based on the Riesz representation
theorem. However it requires a(u, v) to be symmetric, which may not be the case in
practice. The Lax-Milgram theory is then the tool to use. What it says is that provided
that a(u, v) is coercive and bounded on a Hilbert space V (equipped with norm ‖ · ‖V ),
in the sense that there are two constants C1 and α such that

α‖v‖2V ≤ a(v, v), |a(v, w)| ≤ C1‖v‖V ‖w‖V , for all v, w ∈ V, (6.12)

and provided that the functional L(v) is bounded on V , in the sense that there exists a
constant ‖L‖V ∗ such that

|L(v)| ≤ ‖L‖V ∗‖v‖V , for all v ∈ V

then the abstract problem

a(u, v) = L(v), for all v ∈ V, (6.13)

admits a unique solution u ∈ V . This abstract theory is extremely useful in many
practical problems.

Regularity issues. The above theory gives us a weak solution u ∈ H1
0 to the problem

(6.1). The solution is “weak” because the elliptic problem should be considered in it
variational form (6.3) rather than its PDE form (6.1). The Laplacian of a function in
H1

0 is not necessarily a function. So u is not a strong solution (which is defined as a C2

solution of (6.1)).
It thus remains to understand whether the regularity of u ∈ H1

0 is optimal. The
answer is no in most cases. What we can show is that for smooth boundaries ∂Ω and
for convex polygons ∂Ω, we have

‖u‖H2 ≤ C‖f‖L2 . (6.14)
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When f ∈ L2, we thus deduce that u ∈ H2 ∩H1
0 . Deriving such results is beyond the

scope of these notes and we will simply admit them. The main aspect of this regularity
result is that u has two more degrees of regularity than f ; when f ∈ L2, the second-
order partial derivatives of u are also in L2. This may be generalized as follows. For
sufficiently smooth ∂Ω, or for very special polygons Γ (such as rectangles), we have the
following result:

‖u‖Hk+2 ≤ C‖f‖Hk , k ≥ 0. (6.15)

This means that the solution u may be quite regular provided that the source term
f is sufficiently regular. Moreover, a classical Sobolev inequality theorem says that
a function u ∈ Hk for k > d/2, where d is space dimension, is also of class C0. In
dimension d = 2, this means that as soon as f ∈ Hk for k > 1, then u is of class C2,
i.e., is a strong solution of (6.1).

As we saw for finite difference and spectral methods the regularity of the solution
dictates the accuracy of the discretized solution. The above regularity results will thus
be of crucial importance in the analysis of finite element methods which we take up
now.

6.2 Galerkin approximation

The above theory of existence is fundamentally different from what we used in the finite
difference and spectral methods: we no longer have (6.1) to discretize but rather (6.3).
The main difficulty in solving (6.3) is that V = H1

0 is infinite dimensional. This however
gives us the right idea to discretize (6.3): simply replace V by a discrete approximation
Vh and solve (6.3) in Vh rather than V . We then have to choose the family of spaces Vh

for some parameter h→ 0 (think of h as a mesh size) such that the solution converges
to u in a reasonable sense.

The Galerkin method is based on choosing finite dimensional subspaces Vh ⊂ V . In
our problem (6.1), this means choosing Vh as subsets of H1

0 . This requires some care:
functions in H1

0 have derivatives in L2. So piecewise constant functions for instance,
are not elements of H1

0 (because they can jump and the derivatives of jumps are too
singular to be elements of L2), and Vh can therefore not be constructed using piecewise
constant functions.

Let us assume that we have a sequence of finite dimensional subspaces Vh ⊂ V . Then
the spaces Vh are Hilbert spaces. Assuming that the bilinear form a(u, v) is coercive
and bounded on V (see Rem. 6.3), then clearly it remains coercive and bounded on Vh

(because it is specifically chosen as a subset of V !). Theorem 6.1 and its generalization
in Rem. 6.3 then hold with V replaced by Vh. The same theory as for the continuous
problem thus directly gives us existence and uniqueness of a solution uh to the discrete
problem:

Find uh ∈ Vh such that a(uh, v) = L(v) for all v ∈ Vh. (6.16)

It remains to obtain an error estimate for the problem on Vh. Let us assume that
a(u, v) is symmetric and as such defines a norm (6.10) on V and Vh. Then we have
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Lemma 6.4 The solution uh to (6.16) is the best approximation to the solution u of
(6.3) for the ‖ · ‖a norm:

‖u− uh‖a = min
v∈Vh

‖u− v‖a. (6.17)

Proof. There are two main ideas there. The first idea is that since Vh ⊂ V , we can
subtract (6.16) from (6.8) to get the following orthogonality condition

a(u− uh, v) = 0, for all v ∈ Vh. (6.18)

Note that this property only depends on the linearity of u 7→ a(u, v) and not on a being
symmetric. Now because a(u, u) is an inner product (so that a(u, v) ≤ ‖u‖a‖v‖a) and
v 7→ a(u, v) is linear, we verify that for all v ∈ Vh

‖u− uh‖2a = a(u− uh, u− uh) = a(u− uh, u) = a(u− uh, u− v) ≤ ‖u− uh‖a‖u− v‖a.

If ‖u−uh‖a = 0, then the lemma is obviously true. If not, then we can divide both sides
in the above inequality by ‖u − uh‖a to get that ‖u − uh‖a ≤ ‖u − v‖a for all v ∈ V .
This yields the lemma.

Remark 6.5 When a(u, v) satisfies the hypotheses given in Rem. 6.3, the above result
does not hold. However, it may be replaced by

‖u− uh‖V ≤
C1

α
min
v∈V
‖u− v‖V . (6.19)

Exercise 6.2 Prove (6.19).

So, although uh is no longer the best approximation of u in any norm (because a(u, v) no
longer generates a norm), we still observe that up to a multiplicative constant (greater
than 1 obviously), uh is still very close to being an optimal approximation of u (for the
norm ‖ · ‖V now).

Note that the above result also holds when a(u, v) is symmetric. Then uh is the best
approximation of u for the norm ‖ · ‖a, but not for the norm ‖ · ‖V . We have equipped
V (and Vh) with two different, albeit equivalent, norms. We recall that two norms ‖ · ‖a
and ‖ · ‖V are equivalent if there exists a constant C such that

C−1‖v‖V ≤ ‖v‖a ≤ C‖v‖V , for all v ∈ V. (6.20)

Exercise 6.3 When a(u, v) is symmetric and coercive on V , show that the two norms
‖ · ‖a and ‖ · ‖V are equivalent.

Let us summarize our results. We have replaced the variational formulation for
u ∈ V by a discrete variational formulation for uh ∈ Vh. We have shown that the discrete
problem indeed admitted a unique solution (and thus requires to solve a problem of the
form Ax = b since the problem is linear and finite dimensional), and that the solution
uh was the best approximation to u when a(u, v) generates a norm, or at least was not
too far from the best solution, this time for the norm ‖ · ‖V , when a(u, v) is coercive
(whether it is symmetric or not).

In our problem (6.1), V = H1
0 . So we have obtained that ‖u− uh‖H1 is close to the

best possible approximation of u by functions in H1
0 . Note that the “closeness” is all
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relative. For instance, when α is very small, an error bound of the form (6.19) is not
necessarily very accurate. When a is symmetric, (6.17) is however always optimal. In
any event, we need additional information on the spaces Vh if one wants to go further.
We can go further in two directions: see how small ‖u−uh‖H1 is for specific sequences of
spaces Vh, but also see how small u−uh is in possibly other norms one may be interested
in, such as ‖u− uh‖L2 . We now consider a specific example of Galerkin approximation:
the finite element method (although we should warn the reader that many finite element
methods are not of the Galerkin form because they are based on discretization spaces
Vh that are not subspaces of V ).

6.3 An example of finite element method

We are now ready to introduce a finite element method. To simplify we assume that Ω is
a rectangle. We then divide Ω into a family Th of non-overlapping closed triangles. Each
triangle T ∈ Th is represented by three vertices and three edges. We impose that two
neighboring triangles have one edge (and thus two vertices) in common, or one vertex
in common. This precludes the existence of vertices in the interior of an edge. The set
of all vertices in the triangulation are called the nodes of Th. The index h > 0 measures
the “size” of the triangles. A triangulation Th of size h is thus characterized by

Ω̄ =
⋃

T∈Th

T, hT = diam(T ), h = max
T∈Th

hT . (6.21)

As the triangulation gets finer and h→ 0, we wish to be able to construct more accurate
solutions uh to u solution of (6.8). Note that finite element methods could also be based
on different tilings of Ω, for instance based on quadrilaterals, or higher order polygons.
We only consider triangles here.

The reason we introduce the triangulation is that we want to approximate arbitrary
functions in V = H1

0 by finite dimensional functions on each triangle T ∈ Th. As we have
already mentioned, the functions cannot be chosen on each triangle independently of
what happens on the other triangles. The reason is that such functions may not match
across edges shared by two triangles. These jumps however would violate the fact that
our discrete functions need to be in H1

0 . For instance functions that are constant on
each triangle T ∈ Th are not in H1

0 and are thus not admissible. Here we consider
the simplest finite element method. The simplest functions after piecewise constant
functions are piecewise linear functions. Moreover, we want the functions not to jump
across edges of the triangulation. We thus define

Vh = {v ∈ H1
0 ; v is linear on each T ∈ Th}. (6.22)

Recall that this imposes that v = 0 on ∂Ω. The space Vh is a finite dimensional subspace
of H1

0 (see below for a “proof”) so that the theory given in the previous section applies.
This gives us a solution uh to (6.16).

A linear system. We now recast the above problem for uh as a linear system (of the
form Ax = b). To do so, we need a basis for Vh. Because the functions in Vh are in
H1

0 , then cannot jump across edges. Because they are piecewise linear, they must be
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continuous on Ω. So they are characterized (uniquely determined) by the values they
take on each node Pi ∈ Ω for 1 ≤ i ≤ Mh of the triangulation Th (note that since
Ω is an open domain, the notation means that Mh is the number of internal nodes of
the triangulation: the nodes Pi ∈ ∂Ω should be labeled with Mh + 1 ≤ i ≤ Mh + bh,
where bh is the number of nodes Pi ∈ ∂Ω). Consider the family of pyramid functions
φi(x) ∈ Vh for 1 ≤ i ≤Mh defined by

φi(Pj) = δij, 1 ≤ i, j ≤Mh. (6.23)

We recall that the Kronecker delta δij = 1 if i = j and δij = 0 otherwise. Since φi(x)
is piecewise affine on Th, it is uniquely defined by its values at the nodes Pj. Moreover,
we easily deduce that the family is linearly independent, whence is a basis for Vh. This
proves that Vh is finite dimensional. Note that by assuming that φi ∈ Vh, we have also
implicitly implied that φi(Pj) = 0 for Pj ∈ ∂Ω. Note also that for Pj,Pk ∈ ∂Ω, the
function φi (for Pi 6∈ ∂Ω) vanishes on the whole edge (Pj,Pk) so that indeed φi = 0 on
∂Ω. We can thus write any function v ∈ Vh as

v(x) =

Mh∑
i=1

viφi(x), vi = v(Pi). (6.24)

Let us decompose the solution uh to (6.16) as uh(x) =
∑Mh

i=1 uiφi(x). The equation
(6.16) may then be recast as

(f, φi) = a(uh, φi) =

Mh∑
j=1

a(φj, φi)uj.

This is nothing but the linear system

Ax = b, Aij = a(φj, φi), xi = ui, bi = (f, φi). (6.25)

In the specific problem of interest here where a(u, v) is defined by (6.3), we have

Aij =

∫
Ω

(
∇φj(x) · ∇φi(x) + σ(x)φj(x)φi(x)

)
dx.

There is therefore no need to discretize the absorption parameter σ(x): the variational
formulation takes care of this. Solving for uh thus becomes a linear algebra problem,
which we do not describe further here. Let us just mention that the matrix A is quite
sparse because a(φi, φj) = 0 unless Pi and Pj belong to the same edge in the triangula-
tion. This is a crucial property to obtain efficient numerical inversions of (6.25). Let us
also mention that the ordering of the points Pi is important. As a rough rule of thumb,
one would like the indices of points Pi and Pj belonging to the same edge to be such
that |i− j| is as small as possible to render the matrix A as close to a diagonal matrix
as possible. The optimal ordering thus very much depends on the triangulation and is
by no means a trivial problem.
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Approximation theory. So far, we have constructed a family of discrete solutions uh

of (6.16) for various parameters h > 0. Let now Th be a sequence of triangulations such
that h→ 0 (recall that h is the maximal diameter of each triangle in the triangulation).
It remains to understand how small the error u−uh is. Moreover, this error will depend
on the chosen norm (we have at least three reasonable choices: ‖ ·‖a, ‖ ·‖H1 , and ‖ ·‖L2).

Since the problem (6.16) is a Galerkin discretization, we can use (6.17) and (6.19)
and thus obtain in the H1

0 and a− norms that u − uh is bounded by a constant times
u−v for arbitrary v ∈ Vh. Finding the best approximation v for u in a finite dimensional
space for a given norm would be optimal. However this is not an easy task in general.
We now consider a method, which up to a multiplicative constant (independent of h),
indeed provides the best approximation.

Our approximation is based on interpolation theory. Let us assume that f ∈ L2(Ω)
so that u ∈ H2(Ω) thanks to (6.14). This implies that u is a continuous function as
2 > d/2 = 1. We define the interpolation operator πh : C(Ω̄)→ Vh by

(πhv)(x) =

Mh∑
i=1

v(Pi)φi(x). (6.26)

Note that the function v needs to be continuous since we evaluate it at the nodes Pi.
An arbitrary function v ∈ H1

0 need not be well-defined at the points Pi (although it
almost is...)

We now want to show that πhv−v gets smaller as h→ 0. This is done by looking at
πhv−v on each triangle T ∈ Th and then summing the approximations over all triangles
of the triangulation. We thus need to understand the approximation at the level of one
triangle. We denote by πT v the affine interpolant of v on a triangle T . For a triangle T
with vertices Pi, 1 ≤ i ≤ 3, it is defined as

πT v(x) =
3∑

i=1

v(Pi)φi(x), x ∈ T,

where the φi(x) are affine functions defined by φi(Pj) = δij, 1 ≤ i, j ≤ 3. We recall
that functions in H2(T ) are continuous, so the above interpolant is well-defined for each
v ∈ H2(T ). The various triangles in the triangulation may be very different so we need
a method that analyzes πT v − v on arbitrary triangles. This is done in two steps. First
we pick a triangle of reference T̂ and analyze πT̂ v− v on it in various norms of interest.

Then we define a map that transforms T̂ to any triangle of interest T . We then push
forward any properties we have found on T̂ to the triangle T through this map. The
first step goes as follows.

Lemma 6.6 Let T̂ be the triangle with vertices (0, 0), (1, 0), and (0, 1) in an orthonor-
mal system of coordinates of R2. Let v̂ be a function in H2(T̂ ) and πT̂ v̂ its affine
interpolant. Then there exists a constant C independent of v̂ such that

‖v̂ − πT̂ v̂‖L2(T̂ ) ≤ C|v̂|H2(T̂ )

‖∇(v̂ − πT̂ v̂)‖L2(T̂ ) ≤ C|v̂|H2(T̂ ).
(6.27)

We recall that | · |H2(T̂ ) is the semi-norm defined in (6.6).
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Proof. The proof is based on judicious use of Taylor expansions. First, we want to
replace πT̂ by a more convenient interpolant ΠT̂ . By definition of πT̂ , we deduce that

‖πT̂ v‖H1 ≤ C‖v‖H2 ,

since |v(Pi)| ≤ C‖v‖H2 in two space dimensions. Also we verify that for all affine
interpolants ΠT̂ , we have πT̂ ΠT̂ v = ΠT̂ v so that

‖v − πT̂ v‖H1 ≤ ‖v − ΠT̂ v‖H1 + ‖πT̂ (ΠT̂ v − v)‖H1 ≤ C‖v − ΠT̂ v‖H1 + C|v|H2 .

This is because the second-order derivatives of ΠT̂ v vanish by construction. So we see
that it is enough to prove the results stated in the theorem for the interpolant ΠT̂ . This
is based on the following Taylor expansion (with Lagrange remainder):

v(x) = v(x0)+ (x−x0) ·∇v(x0)+ |x−x0|2
∫ 1

0

(x ·∇)2v((1− t)x0 + tx)(1− t)dt. (6.28)

Since we will need it later, the same type of expansion yields for the gradient:

∇v(x) = ∇v(x0) + |x− x0|
∫ 1

0

x · ∇∇v((1− t)x0 + tx)dt. (6.29)

Both integral terms in the above expressions involve second-order derivatives of v(x).
However they may not quite be bounded by C|v|H2(T̂ ). The reason is that the affine
interpolant v(x0)+(x−x0) ·∇v(x0) and its derivative ∇v(x0) both involve the gradient
of v at x0, and there is no reason for |∇v(x0)| to be bounded by C|v|H2(T̂ ). This causes
some technical problems. The way around is to realize that x0 may be seen as a variable
that we can vary freely in T̂ . We therefore introduce the function φ(x) ∈ C∞

0 (T̂ ) such
that φ(x) ≥ 0 and

∫
T̂

φ(x)dx = 1. It is a classical real-analysis result that such a

function exists. Upon integrating (6.28) and (6.29) over T̂ in x0, we obtain that

v(x) = ΠT̂ v(x) +

∫
T̂

φ(x0)|x− x0|2
∫ 1

0

(x · ∇)2v((1− t)x0 + tx)(1− t)dtdx0

∇v(x) = ∇ΠT̂ v(x) +

∫
T̂

φ(x0)|x− x0|
∫ 1

0

x · ∇∇v((1− t)x0 + tx)dtdx0

ΠT̂ v(x) =
( ∫

T̂

(
v(x0)− x0 · ∇v(x0)

)
φ(x0)dx0

)
+

( ∫
T̂

φ(x0)∇v(x0)dx0

)
· x.

(6.30)

We verify that ΠT̂ v is indeed an affine interpolant for v ∈ H1(T̂ ) in the sense (thanks
to the normalization of φ(x)) that ΠT̂ v = v when v is a polynomial of degree at most 1
(in x1 and x2) and that ‖ΠT̂ v‖H1 ≤ C‖v‖H1 .

It remains to show that the remainders v(x) − ΠT̂ v(x) and ∇(v(x) − ΠT̂ v(x)) are

indeed bounded in L2(T̂ ) by C|v|H2 . We realize that both remainders involve bounded
functions (such as |x − x0| or 1 − t) multiplied by second-order derivatives of v. It is
therefore sufficient to show a result of the form∫

T̂

dx
( ∫

T̂

φ(x0)

∫ 1

0

|f(x0 + t(x− x0))|dtdx0

)2

dx0 ≤ C‖f‖2
L2(T̂ )

, (6.31)
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for all f ∈ L2(T̂ ). By the Cauchy-Schwarz inequality (stating that (f, g)2 ≤ ‖f‖2‖g‖2,
where we use g = 1), the left-hand side in the above equation is bounded (because T̂ is
a bounded domain) by

C

∫
T̂

∫
T̂

φ2(x0)

∫ 1

0

f 2((1− t)x0 + tx)dtdx0dx.

We extend f(x) by 0 outside T̂ . Let us now consider the part 1/2 < t < 1 in the above
integral and perform the change of variables tx← x. This yields∫ 1

1/2

dt

∫
T̂

dx0φ
2(x0)

∫
t−1T̂

dx

t2
f 2((1− t)x0 + x) ≤

( ∫ 1

1/2

dt

t2

∫
T̂

dx0φ
2(x0)

)
‖f‖2

L2(T̂ )
.

This is certainly bounded by C‖f‖2
L2(T̂ )

. Now the part 0 < t < 1/2 with the change of

variables (1− t)x0 ← x0 similarly gives a contribution of the form( ∫ 1/2

0

dt

(1− t)2
‖φ2‖L∞(T̂ )|T̂ |

)
‖f‖2

L2(T̂ )
,

where |T̂ | is the surface of T̂ . These estimates show that

‖v − ΠT̂ v‖H1(T̂ ) ≤ C|v|H2(T̂ ). (6.32)

This was all we needed to conclude the proof of the lemma.
Once we have the estimate on T̂ , we need to obtain it for arbitrary triangles. This is
done as follows:

Lemma 6.7 Let T be a proper (not flat) triangle in the plane R2. There is an or-
thonormal system of coordinates such that the vertices of T are the points (0, 0), (0, a),
and (b, c), where a, b, and c are real numbers such that a > 0 and c > 0. Let us define
‖A‖∞ = max(a, |b|, c).

Let v ∈ H2(T ) and πT v its affine interpolant. Then there exists a constant C inde-
pendent of the function v and of the triangle T such that

‖v − πT v‖L2(T ) ≤ C‖A‖2∞|v|H2(T )

‖∇(v − πT v)‖L2(T ) ≤ C
‖A‖3∞

ac
|v|H2(T ).

(6.33)

Let us now assume that hT is the diameter of T . Then clearly, ‖A‖∞ ≤ hT . Fur-
thermore, let us assume the existence of ρT such that

ρT hT ≤ a ≤ hT , ρT hT ≤ c ≤ hT . (6.34)

Then we have the estimates

‖v − πT v‖L2(T ) ≤ Ch2
T |v|H2(T )

‖∇(v − πT v)‖L2(T ) ≤ Cρ−2
T hT |v|H2(T ).

(6.35)

We recall that C is independent of v and of the triangle T .
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Proof. We want to map the estimate on T̂ in Lemma 6.6 to the triangle T . This
is achieved as follows. Let us define the linear map A : R2 → R2 defined in Cartesian
coordinates as

A =

(
a 0

b c

)
. (6.36)

We verify that A(T̂ ) = T . Let us denote by x̂ coordinates on T̂ and by x coordinates
on T . For a function v̂ on T̂ , we can define its push-forward v = A∗v̂ on T , which is
equivalent to

v̂(x̂) = v(x) with x = Ax̂ or v̂(x̂) = v(Ax̂).

By the chain rule, we deduce that

∂v̂

∂x̂i

= Aik
∂v

∂xk

,

where we use the convention of summation over repeated indices. Differentiating one
more time, we deduce that∑

|α|=2

|Dαv̂|2(x̂) ≤ C‖A‖4∞
∑
|α|=2

|Dαv|2(x), x = Ax̂. (6.37)

Here the constant C is independent of v and v̂. Note that the change of measures
induced by A is dx̂ = |det(A−1)|dx so that∫

T̂

∑
|α|=2

|Dαv̂|2(x̂)dx̂ ≤ ‖A‖4∞|det(A−1)|
∫

T

∑
|α|=2

|Dαv|2(x)dx.

This is equivalent to the statement:

|v̂|H2(T̂ ) ≤ C|det(A)|−1/2‖A‖2∞|v|H2(T ). (6.38)

This tells us how the right-hand side in (6.27) may be used in estimates on T . Let us
now consider the left-hand sides. We first notice that

(πT̂ v̂)(x̂) = (πT v)(x). (6.39)

The reason is that v̂i = vi at the nodes and that for any polynomial of order 1 in the
variables x̂1, x̂2, p(Ax̂) is also a polynomial of order 1 in the variables x1 and x2. This
implies that

(v̂ − πT̂ v̂)(x̂) = (v − πT v)(x), A−1∇(v̂ − πT̂ v̂)(x̂) = ∇(v − πT v)(x); x = Ax̂.

Using the same change of variables as above, this implies the relations

‖v̂ − πT̂ v̂‖2
L2(T̂ )

= | det A−1| ‖v − πT v‖2L2

‖A−1‖2∞‖∇(v̂ − πT̂ v̂)‖2
L2(T̂ )

≥ C| det A−1| ‖∇(v − πT v)‖2L2 .
(6.40)

Here, C is a universal constant, and ‖A−1‖∞ = (ac)−1‖A‖∞ (i.e., is the maximal element
of the 2 × 2 matrix A−1). The above inequalities combined with (6.38) directly give
(6.33). The estimates (6.35) are then an easy corollary.
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Remark 6.8 (Form of the triangles) The first inequality in (6.35) only requires that
the diameter of T be smaller than hT . The second estimate however requires more. It
requires that the triangles not be too flat and that all components a, b, and c be of
the same order hT . We may verify that the constraint (6.34) is equivalent to imposing
that all the angles of the triangle be greater than a constant independent of hT and is
equivalent to imposing that there be a ball of radius of order hT inscribed in T . From
now on, we impose that ρT ≥ ρ0 > 0 for all T ∈ Th independent of the parameter h.

This concludes this section on approximation theory. Now that we have local error
estimates, we can sum them to obtain global error estimates.

A Global error estimate in H1
0 (Ω). Let us come back to the general framework of

Galerkin approximations. We know from (6.19) that the error of u−uh in H1
0 (the space

in which estimates are the easiest!) is bounded by a constant times the error u − v in
the same norm, where v is the best approximation of u (for this norm). So we obviously
have that

‖u− uh‖H1 ≤ C‖u− πhu‖H1 . (6.41)

Here the constant C depends on the form a(·, ·) but not on u nor uh. The above right-
hand side is by definition( ∑

T∈Th

∫
T

(
|u− πT u|2 + |∇(u− πT u)|2

)
dx

)1/2

≤
( ∑

T∈Th

ρ−4
0 h2

T |u|2H2(T )

)1/2

,

thanks to (6.35). This however, implies the following result

Theorem 6.9 Let u be the solution to (6.8), which we assume is in H2(Ω). Let uh be
the solution of the discrete problem (6.16) where Vh is defined in (6.22) based on the
triangulation define in (6.21). Then we have the error estimate

‖u− uh‖H1(Ω) ≤ Cρ−2
0 h|u|H2(Ω). (6.42)

Here, C is a constant independent of Th, u, and uh. However it may depend on the
bilinear form a(u, v). We recall that ρ0 was defined in Rem. 6.8.

The finite element method is thus first-order for the approximation of u in the H1

norm. We may show that the order of approximation in O(h) obtained in the theorem
is optimal (in the sense that h cannot be replaced by hα with α > 1 in general).

A global error estimate in L2(Ω). The norm ‖ · ‖a is equivalent to the H1 norm.
So the above estimate also holds for the ‖ · ‖a norm (which is defined only when a(u, v)
is symmetric). The third norm we have used is the L2 norm. It is reasonable to expect
a faster convergence rate in the L2 norm than in the H1 norm. The reason is this.
In the linear approximation framework, the gradients are approximated by piecewise
constant functions whereas the functions themselves are approximated by polynomials
of order 1 on each triangle. We should therefore have a better accuracy for the functions
than for their gradients. This is indeed the case. However the demonstration is not
straightforward and requires to use the regularity of the elliptic problem one more time
in a curious way.
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Theorem 6.10 Under the hypotheses of Theorem (6.9) and the additional hypothesis
that (6.14) holds, we have the following error estimate

‖u− uh‖L2(Ω) ≤ Cρ−4
0 h2‖u‖H2(Ω). (6.43)

Proof. Let w be the solution to the problem

a(v, w) = (v, u− uh), for all v ∈ V. (6.44)

Note that since a(u, v) is symmetric, this problem is equivalent to (6.8). However, when
a(u, v) is not symmetric, (6.44) is equivalent to (6.8) only by replacing a(u, v) by the
adjoint bilinear form a∗(u, v) = a(v, u). The equation (6.44) is therefore called a dual
problem to (6.8), and as a consequence the proof of Theorem 6.10 we now present is
referred to as a duality argument in the literature.

In any event, the above problem (6.44) admits a unique solution thanks to Theorem
6.1. Moreover our hyp othesis that (6.14) holds implies that

‖w‖H2 ≤ C‖u− uh‖L2 . (6.45)

Using in that order the choice v = u− uh in (6.44), the orthogonality condition (6.18),
the bound in (6.12) (with V = H1

0 ), the estimate (6.45), and finally the error estimate
(6.42), we get:

‖u− uh‖2L2 = a(u− uh, w) = a(u− uh, w − πhw) ≤ C‖u− uh‖H1‖w − πhw‖H1

≤ C‖u− uh‖H1ρ−2
0 h‖w‖2 ≤ Cρ−2

0 h‖u− uh‖H1‖u− uh‖L2

≤ Cρ−4
0 h2‖u‖H2‖u− uh‖L2 .

This concludes our result.
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7 Introduction to Monte Carlo methods

7.1 Method of characteristics

Let us first make a small detour by the method of characteristics. Consider a hyperbolic
equation of the form

∂v

∂t
− c

∂v

∂x
+ αv = β, v(0, x) = P (x), (7.1)

for t > 0 and x ∈ R. We want to solve (7.1) by the method of characteristics. The
main idea is to look for solutions of the form

v(t, x(t)), (7.2)

where x(t) is a characteristic, solving an ordinary differential equation, and where the
rate of change of ω(t) = v(t, x(t)) is prescribed along the characteristic x(t).

We observe that
d

dt

(
v(t, x(t))

)
=

∂v

∂t
+

dx

dt

∂v

∂x
,

so that the characteristic equations for (7.3) are

dx

dt
= −c,

dv

dt
+ αv = β. (7.3)

The solutions are found to be

x(t) = x0 − ct, v(t, x(t)) = e−αtv(0, x0) +
β

α
(1− e−αt). (7.4)

For each (t, x), we can find a unique x0(t, x) = x + ct so that

v(t, x) = e−αtP (x + ct) +
β

α
(1− e−αt). (7.5)

Many first-order linear and non-linear equations may be solved by the method of
characteristics. The main idea, as we have seen, is to replace a partial differential
equation (PDE) by a system of ordinary differential equations (ODEs). The latter
may then be discretized if necessary and solved numerically. Since ODEs are solved,
we avoid the difficulties in PDE-based discretizations caused by the presence of high
frequencies that are not well captured by the schemes. See the section on finite difference
discretizations of hyperbolic equations.

There are many other difficulties in the numerical implementation of the method of
characteristics. For instance, we need to solve the characteristic backwards from x(t) to
x(0) and evaluate the initial condition at x(0), which may not be a grid point and thus
may require that we use an interpolation technique. Yet the method is very powerful as
it is much easier to solve ODEs than PDEs. In the literature, PDE-based, grid-based,
methods are referred to as Eulerian, whereas methods acting in the reference frame of
the particles following their characteristic (which requires solving ODEs) are referred to
as Lagrangian methods. The combination of grid-based and particle-based methods
gives rise to the so-called semi-Lagrangian method.
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7.2 Probabilistic representation

One of the main drawbacks of the method of characteristics is that it applies (only)
to scalar first-order equations. In one dimension of space, we can apply it to the wave
equation

0 =
∂2u

∂t2
− ∂2u

∂x2
= (

∂

∂t
− ∂

∂x
)(

∂

∂t
+

∂

∂x
)u,

because of the above decomposition. However, the method does not apply to multi-
dimensional wave equations nor to elliptic or parabolic equations such as the Laplace and
heat equations. The reason is that information does not propagate along characteristics
(curves).

For some equations, a quasi-method of characteristics may still be developed. How-
ever, instead of being based on us following one characteristics, it is based on us following
an infinite number of characteristics generated from an appropriate probability measure
and averaging over them. More precisely, instead of looking for solutions of the form
w(t, x(t)), we look for solutions of the form

u(t, x) = E{u0(X(t))|X(0) = x}, (7.6)

where X(t) = X(t, ω) is a trajectory starting at x for realizations ω in a state space
Ω, and E is ensemble averaging with respect to a measure P defined on Ω. It is not
purpose of these notes to dwell on (7.6). Let us give the most classical of examples.
Let W (t) be a standard one-dimensional Brownian motion with W (0) = 0. This is an
object defined on a space Ω (the space of continuous trajectories on [0,∞)) with an
appropriate measure P. All trajectories are therefore continuous (at least almost surely)
but are also almost surely always non-differentiable. The “characteristics” have thus
become rather un-smooth objects. In any event, we find that

u(t, x) = E{u0(x + W (2t))}, (7.7)

solves the heat equation

∂u

∂t
− ∂2u

∂x2
= 0, u(0, x) = u0(x). (7.8)

This may be shown by e.g. Itô calculus. Very briefly, let g(W (2t)) = u0(x + W (2t)).
Then, we find that

dg =
∂g

∂x
dW2t +

1

2

∂2g

∂x2
dW2tdW2t =

∂g

∂x
dW2t +

∂2g

∂x2
dt,

since dW2tdW2t = d(2t). Using E{W2t} = 0, we obtain after ensemble averaging that
(7.7) solves (7.8). We thus see that u(t, x) is an infinite superposition (E is an inte-
gration) of pieces of information carried along the trajectories. We also see how this
representation gives rise to the Monte Carlo method. We cannot simulate an infinite
number of trajectories. However, we can certainly simulate a finite, large, number of
them and perform the averaging. This is the basis for the Monte Carlo method. Note
that in (7.7), simulating the characteristic is easy as we know the law of W (t) (a cen-
tered Gaussian variable with variance equal to t). In more general situations, where the
diffusion coefficient depends on position, then W (2t) is replaced by some process X(t; x)
which depends in a more complicated way on the location of the origin x. Solving for
the trajectories becomes more difficult.
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7.3 Random Walk and Finite Differences

Brownian motion has a relatively simple discrete version, namely the random walk.
Consider a process Sk such that S0 = 0 and Sk+1 is equal to Sk + h with probability 1

2

and equal to Sk − h also with probability 1
2
.

We may decompose this random variable as follows. Let us assume that we have
N (time) steps and define N independent random variables xk, 1 ≤ k ≤ N , such that
xk = ±1 with probability 1

2
. Then,

Sn = h
n∑

k=1

xk,

is our random walk.
Let us relate all this to Bernoulli random variables. Define yk for 1 ≤ k ≤ N , N

independent random variables equal to 0 or 1 with probability 1
2

and let Σn =
∑n

k=1 yk.
Each sequence of n of 0’s and 1’s for the yk has probability 2−n. The number of sequences
such that Σn = m is

(
n
m

)
by definition (number of possibilities of choosing m balls among

n ≥ m balls). As a consequence, using xk = (2yk − 1), we see that

pm = P(Sn = hm) =
1

2n

(
n

n+m
2

)
. (7.9)

Exercise 7.1 Check this.

Note that Sn is even when n is even and odd when n is odd so that n+m
2

is always an
integer. We thus have an explicit expression for Sn. Moreover, we easily find that

E{Sn} = 0, VarSn = E{S2
n} = nh2. (7.10)

The central limit theorem shows that Sn converges to W (2t) if n → ∞ and h → 0
such that nh2 = 2t. Moreover, Sαn also converges to W (2αt) in an appropriate sense
so that there is solid mathematical background to obtain that Sn is indeed a bona fide
discretization of Brownian motion. This is Donsker’s invariance principle.

How does one use all of this to solve a discretized version of the heat equation?
Following (7.7), we can define

Un
j = E{U0

j+h−1Sn
}, (7.11)

where U0
j is an approximation of u0(jh) as before, and where Un

j is an approximation
of u(n∆t, jh). What is it that we have defined? For this, we need to use the idea of
conditional expectations, which roughly says that averaging over two random variables
may be written as an averaging over the first random variable (this is thus still a random
variable) and then average over the second random variable. In our context:

Un
j = E{U0

j+x1+...+xn
} = E{E{U0

j+x1+...+xn
|xn}}

=
1

2
E{U0

j+1+x1+...+xn−1
}+

1

2
E{U0

j−1+x1+...+xn−1
} =

1

2

(
Un−1

j+1 + Un−1
j−1

)
.
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In other words, Un
j solves the finite difference equation with λ = 1

2
(and ONLY this

value of λ the way the procedure is constructed). Recall that

λ =
D∆t

h2
=

1

2
, (7.12)

where D is the diffusion coefficient. In other words, the procedure (7.11) gives us an
approximation of

∂u

∂t
−D

∂2u

∂x2
= 0, u(0, x) = u0,

when ∆t and h are chosen so that (7.12) holds.

7.4 Monte Carlo method

Solving for Un
j thus requires that we construct Sn (by flipping n ±1 coins) and evaluate

X := U0
j+h−1Sn

. If we do it once, how accurate are we? The answer is not much. Let us
look at the random variable X. We know that E{X} = Un

j so that X is an unbiased
estimator of Un

j . However, its variance is often quite large. Using (7.9), we find that
P(X = U0

j+m) = pm. As a consequence, we find that:

σ2 = VarX =
n∑

k=1

pk

(
U0

j−k −
n∑

l=1

plU
0
j−l

)2

. (7.13)

Assume that U0
j = U independent of j. Then σ2 = 0 and X gives the right answer

all the time. However, when U0 is highly oscillatory, say (−1)l, then
∑

plU
0
j−l will be

close to 0 by cancellations. This shows that σ2 will be close to
∑

k pk(U
0
j−k)

2, which is
comparable, or even much larger than E{X}. So X has a very large variance and is
therefore not a very good estimator of Un

j .
The (only) way to make the estimator better is to use the law of large numbers by

repeating the experiment M times and averaging over the M results. More precisely,
let Xk for 1 ≤ k ≤ M be M independent random variables with the same law as X.
Define

SM =
1

M

M∑
k=1

Xk. (7.14)

Then we verify that E{SM} = Un
j as before. The variance of SM is however significantly

smaller:

VarSM = E{
( 1

M

M∑
k=1

(Xk − Un
j )

)2

} =
1

M2
E{

M∑
k=1

(Xk − Un
j )2} =

VarX

M
,

since the variables are independent. As a consequence, SM is an unbiased estimator of
U j

n with a standard deviation of order O(M−1/2). This is the speed of convergence of
Monte Carlo. In order to obtain an accuracy of ε on average, we need to calculate an
order of ε−2 realizations.

How do the calculations Monte Carlo versus deterministic compare to calculate Un
j

(at a final time n∆t and a given position j)? Let us assume that we solve a d-dimensional
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heat equation, which involves a d-dimensional random walk, which is nothing but d
one-dimensional random walks in each direction. The cost of each trajectory is of order
n ≈ (∆t)−1 since we need to flip n coins. To obtain an O(h2) = O(∆t) accuracy, we
thus need M = (∆t)−2 so that the final cost is O((∆t)−3).

Deterministic methods require that we solve n time steps using a grid of mesh size
O(h) in each direction, which means O(h−d) discretization points. The total cost of

an explicit method is therefore O((∆thd)−1) = O((∆t)−1− d
2 ). We thus see that Monte

Carlo is more efficient than finite differences (or equally efficient) when

1

∆t3
≤ 1

∆t1+
d
2

, i.e., d ≥ 4. (7.15)

For sufficiently large dimensions, Monte Carlo methods do not suffer the curse of
dimensionality characterizing deterministic methods and thus become more efficient.
Monte Carlo methods are also much more versatile as they are based on solving “random
ODEs” (stochastic ODEs), with which it is easier to account for e.g. complicated
geometries. Finite differences however provide the solution everywhere unlike Monte
Carlo methods, which need to use different trajectories to evaluate solutions at different
points.

Moreover, the Monte Carlo method is much easier to parallelize. For the finite
difference model, it is difficult to use parallel architecture (though this a well-studied
problem) and obtain algorithms running time is inversely proportional to the number
of available processors. In contrast, Monte Carlo methods are easily parallelized since
the M random realizations of X are done independently. So with a (very large) number
of processors equal to M , the running time of the algorithm is of order ∆t−1, which
corresponds to the running time of the finite difference algorithm on a grid with a small
finite number of grid points. Even with a large number of processors, it is extremely
difficult to attain this level of running speed using the deterministic finite difference
algorithm.

Let us conclude by the following remark. The convergence of the Monte Carlo
algorithm in M− 1

2 is rather slow. Many algorithms have been developed to accelerate
convergence. These algorithms are called variance-reduction algorithms and are based
on estimating the solution Un

j by using non-physical random processes with smaller
variance than the classical Monte Carlo method described above.
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