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There are 2 parts to these notes, each addressing the topics of a year-long
course in scientific computing. The courses are math475A and math475B at
U. Arizona. Since the students taking this course sequence come from diverse
backgrounds and most of them do not know any analysis, we have focused
on scientific computing, rather than numerical analysis.

These notes were never developed for public consumption, and just like other
sets of elementary scientific computing notes and textbooks, originality is not
one of its strong characteristics. There are a few books which have strongly
influenced what is presented here: the book by Atkinson on numerical anal-
ysis (I expressly use an old edition), Isaacson and Keller’s book which is
available from Dover, my own student notes (I took numerical analysis from
Ridgway Scott, Jinchao Xu, Douglas Arnold, and Todd Dupont, and at-
tended classes by Stanley Osher while at UCLA).

An alternative set of notes that is worth looking at are those prepared by
Cleve Moler, and are available freely from his Mathworks site.

The portion of these notes related to linear algebra is cursory. The reason
is simple: there are people who can do a much better job at presenting
this material and there are good books out there that cover that material.
With regard to fundamentals I would strongly suggest Strang’s linear algebra
book, as well as Trefethen and Bau’s book. Their geometric approach has
revolutionized how applied linear algebra is taught. The geometric approach
develops the type of insight fundamental to scientific computing.

These notes are being extensively revised. The major revisions are: (1) Incor-
poration of many more examples. (2) Restructuring of the course material.
(3) Making greater use of hyperlinks in order to reduce the complexity of the
notes, while at the same time making the cross references a useful feature of
the text. (4) Changing the notes to PDF format.

As I said, these notes were never intended to be public. This is a work
in progress, and as such, it is bound to have many errors, primarily of typo-
graphic nature (a regretful decision was to have these notes typed by someone
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else who in turn faced the challenge of interpreting my own handwritten scrib-
bles). I would be delighted to hear from you, if these notes have been of any
use to you. Moreover, I am particularly interested in receiving corrections
and suggestions.

At some point in time the use of matlab in numerical analysis classes was
quite rare. I remember using a version of matlab back in 1987. It was still
under development by Cleve Moler (and available only at Stanford). I started
getting into the habit of writing code in matlab, debugging it, and only when
it was debugged, porting the code to c/fortran/C++ (usually leaving all of
the heavy lifting to fortran, the dynamic memory allocation to c, and the
text/object oriented programming aspects to C++). It cut down the time
I spent coding by a factor of 8-10, as compared to working directly with a
”high level programming language.”

I started using matlab for teaching in 1994 (while at UCLA) as did others.
It was amusing to see some of my colleagues insist that matlab was just a toy
and should not be used to teach, let alone compute; their silly claim was that
real computing was done in c, C++, fortran, etc. My orthodox colleagues
were able to have their better students write 4-5 high level codes during a
typical semester; I was able to have most of my students write between 20-35,
using matlab, focusing on scientific computing rather than programming.

Anyway, the use of matlab is no longer an issue (and I am glad that silly fight
is over!). If you do not know matlab, you have little to worry, unless you
are afraid to experiment. Matlab is an interpretive computer language and
sometimes the best way to find out how something works is just to try it out1.
Read the first 20 pages of the primer and do homework 1 of Math475A. This
should take no more than 1:20 hours to do. This will teach you enough of
the essentials of matlab to get going. The homeworks, beyond the first one,
in math475A and B all start with a little primer on some aspect of matlab
that will be useful.

The sequence followed in these notes results from two things: The assumption
that matlab might be new to the student. Since we go from scalar, to vector,

1You can consider OCTAVE, which is free. But if you are going to do this, you might as
well consider PYTHON, which subsumes an interpretive scientific computing environment
into a shell/macro environment. It is free and the web is replete with tutorials and lots of
tools to use.
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to matrix problems, the student will have time to learn enough matlab so
that by the time matrix problems come around, they will be proficient. The
more important reason, however, is that it is important to emphasize the
notion of norm and of error. I found it better to work up in complexity, from
scalar, to vector, to matrix norms.

Please note that the algorithms given in these notes are not matlab compatible
with regard to indices. Be careful, if you are new to matlab, to adjust the
algorithms for indices that include non-positive values.

I had help in the writing/editing of these notes by Prof. Rob Indik, Dr.
Emily Lane, and Ms. Rachel Labes; their input and their hard work has
yielded a better set of notes. Whatever errors are still in the notes are all my
own. I do appreciate hearing from you, either with constructive criticism or
to alert me of errors/omissions.

....Juan M. Restrepo
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1 SOME USEFUL FACTS (PART 1)

1.1 Continuity

A function f(x) is said to be continuous at a point c if

lim
x→c

f(x) = f(c).

Loosely put this means that the value of the function at the point c is equal
to what we would guess it should be when approaching c from either side.

A function is said to be continuous on a interval [a, b] if it is continuous
at every point on the interval [a, b] and if the limx→a+ = f(a) and the
limx→b− = f(b). There are several different ways in which a function may
fail to be continuous on an interval. Figures 1 and 2 show functions which
are discontinuous on the interval [0, 1]. In all the cases the functions are not
continuous at x = 0.5 but as we can see they are discontinuous in many
different ways. The first function in figure 1 has a removable discontinuity.
The function is

f(x) =
2x2 − x

2x− 1
.

This is not defined at x = 0.5 but it is defined everywhere else as f(x) = x.
The function just has a hole at x = 0.5. The second function in figure 1 is

f(x) =

{
2x2 x ≤ 0.5
2− x x > 0.5

This function has a jump discontinuity. The limit does not exist because the
limit from the left is

lim
x→0.5−

= 0.5

but the limit from the right is

lim
x→0.5+

= 1.5.

Now, with reference to the figures, we see that f(x) jumps at this point. The
first function in figure 2 is

f(x) =
1

(x− 0.5)2
.
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Figure 1: Examples of (a) a removable discontinuity and (b) a jump discon-
tinuity.
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Figure 2: Two more types of discontinuities
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This function is discontinuous because as x appraoches 0.5 the value of the
function goes to infinity. The second function in Figure 2 is

f(x) = sin(
1

x− 0.5
).

As x→ 0.5 this function oscillates more and more wildly between ±1 and so
the limit as x approaches 0.5 is not defined. Even if we were to zoom in on
the function near x = 0.5 we would never be able to say what the value of
the function was at x = 0.5.

Now that we have discussed some of the ways in which functions can be
discontinuous let us concentrate on continuous functions. If a function is
continuous on the interval [a, b] we say it comes from the class of functions
C0([a, b]). If a function and its first derivative are both continuous on the
interval [a, b] we say that f(x) ∈ C1([a, b]). Likewise if the function and
its first n derivatives are all continuous on the interval [a, b] we say that
f(x) ∈ Cn([a, b]).

Figure 3 gives an example of a function that is in C0([0, 1]) but not in
C1([0, 1]). The function is

f(x) =

{
2x2 x ≤ 0.5
x
4
+ 0.375 x > 0.5

.

From the picture of f(x) we can see that the function itself is continuous on
[0, 1] but there is a sharp bend at x = 0.5. When we look at the derivative
of f(x) there is a jump discontinuity at x = 0.5 so the first derivative is not
continuous. Thus f(x) is in C0([0, 1]) but not in C1([0, 1]).

Figure 4 shows an example of a function that is in both C0([0, 1]) and
C1([0, 1]) but not in C2([0, 1]). The function is

f(x) = (x− 0.5)1.3.

We can see from Figure 4 that the function is continuous on [0, 1] which means
that it belongs to the class C0([0, 1]). Figure 5 shows the first and second
derivatives of f(x). We can see that the first derivative is also continuous
which means that f(x) ∈ C1([0, 1]). However the first derivative has a sharp
point to it at x = 0.5 and the the second derivative is discontinuous at x = 0.5
so the function is not in C2([0, 1]).
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Figure 3: A function that is C([0, 1]) but not C1([0, 1]). We can see that
although the function is continuous it is not ’smooth’ because there is a
sharp bend at x = 0.5. When we look at the derivative of the function we
can see that it is not continuous because there is a jump in the derivative at
x = 0.5.
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Figure 4: A C1([0, 1]) function but not a C2([0, 1]) function, f(x) = (x −
0.5)1.3. Figure 5 shows the first two derivatives of f(x).

If the function and all its derivatives are continuous on an interval [a, b] we say
that the function is in C∞([a, b]). An example of functions that are C∞([a, b])
are the polynomials. All polynomials are continuous on any bounded interval.
The derivative of a polynomial is another polynomial and so also continuous
on the same interval. Note that f(x) = 0 is a great function in this sense.
Not only is it continuous but its derivative is the same as the function. So
f(x) = 0 is very definitely in C∞([a, b]).

Another useful fact about functions that are in the class C∞([a, b]) is that
they are also in Cn([a, b]) for all values n. In fact there is an ordering of the
sets

C∞([a, b]) ⊂ Cn([a, b]) ⊂ Cn−1([a, b]) ⊂ . . . ⊂ C2([a, b]) ⊂ C1([a, b]) ⊂ C0([a, b]).

1.2 The Intermediate Value Theorem

Theorem: (Intermediate Value Theorem) Suppose f(x) ∈ C[a, b], where k is a
number between f(a) and f(b). Then ∃ a number c ∈ [a, b] such that f(c) = k
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Figure 5: The first and second derivatives of f(x) = (x − 0.5)1.3. The first
derivative of f(x) is continuous so f(x) ∈ C1([0, 1]) but we can see a sharp
point at x = 0.5. This becomes a discontinuity in the second derivative so
f(x) is not in C2([0, 1]).
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Draw a figure to convince yourself of this fact. ✷

Rolle’s Theorem Suppose f(x) ∈ C[a, b] and differentiable on (a, b). If f(a) =
f(b) then ∃ at least one c ∈ (a, b) such that f ′(c) = 0.

Again, a figure will help illustrate this theorem. ✷

Theorem: (Intermediate Value Theorem for Integrals) The simplest version
of this theorem says. Let w(x) and q(x) be 2 functions, continuous on in
interval x ∈ [a, b]. Suppose also that q(x) ≥ 0 for x ∈ [a, b]. Then, there
exists a number s ∈ [a, b] such that

∫ b

a

w(x)q(x)dx = w(s)

∫ b

a

q(x)dx.

The proof follows from noting that if w1 ≤ w(x) ≤ w2 for x ∈ [a, b], and
q(x) ≥ 0 for x ∈ [a, b], the fact that

w1q(x) ≤ w(x)q(x) ≤ w2q(x), w1M ≤
∫ b

a

q(x)w(x)dx ≤ w2M,

where M :=
∫ b

a
q(x)dx, and the intermediate value theorem for functions.

That is,

w(s)M =

∫ b

a

w(x)q(x)dx.

✷

1.3 Orders of Convergence

Convergent Sequences: suppose you are solving an integral by an iterative
technique and the code produces a sequence of real numbers x1, x2, x3 · · ·
tending toward a number.

We write lim
n→∞

xn = L,

if there corresponds to each ε > 0 a real number r such that |xn − L| < ε
whenever n > r (here n integer).
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Example: you can confirm, by numerical experimentation (i.e., make a table)

that lim
n→∞

n+ 1

n
= 1. We can see that |n+1

n
− 1| < ε whenever n >

1

ε
✷

Example Take xn =
(
1 + 1

n

)n
, n = 1, 2, .... Numerical calculation shows that:

x1 = 2.0
x10 = 2.593742
x30 = 2.674319
x50 = 2.691588
x1000 = 2.716924
etc.

You can also confirm numerically that
∣∣∣∣
xn+1 − e

xn − e

∣∣∣∣→ 1.

This means that the difference between the n + 1 iterate and the the L in
this case (which is exp(1)) and the distance between the n iterate and L is
comparable...we use this to estimate the ”rate of convergence” and here we
see it is worse than linear convergence.

✷

Example: Consider xn+1 = xn −
x2
n

x2
n + x2

n−1

, n = 0, 1, 2, ...,

x0 = 20.0
x1 = 15.0
x2 = 14.64
x33 = 0.54
x34 = 0.27

This one has more rapid convergence than the previous case. In fact, numer-
ical experimentation will confirm that

|xn+1|
|xn|

→ 0.

We say that the rate of convergence of this example is “ super linear”.
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✷

Example: Consider

xn+1 =
1

2
xn +

1

xn

.

Start it with x1 = 2. Then, by calculating,

x1 = 2
x2 = 1.5
x3 = 1.416667
x4 = 1.41421
etc.

The limiting value is L =
√
2. Again, one can confirm the following numeri-

cally:
|xn+1 −

√
2|

|(xn −
√
2)2|
≤ 0.36.

This is a case of quadratic rate of convergence. We see that the distance
between the n+1 iterate and the L is about as large as the distance between
the n iterate and L to the second power...the ratio is a constant.

✷

Orders of Convergence

We use orders of convergence to indicate whether a computation converges
and to determine how fast a computation converges. All things being equal,
if we have two converging methods of computing L, we would choose the
faster one.

Linear
|xn+1 − x∗| ≤ K|xn − x∗| n ≥ N ∈ Z, here c < 1

Superlinear:
|xn+1 − x∗| ≤ εn|xn − x∗| n ≥ N

and εn → 0.

Quadratic:

|xn+1 − x∗| ≤ K|xn − x∗|2, have K not necessarily less than 1

17
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Figure 6: f(n) = O(g(n)) as n→∞. Here g(n) 6= 0.

General case: If
|xn+1 − x∗| ≤ K|xn − x∗|α

we say “at least α-order convergent.”

✷

1.4 Big O and o notation:

Let [xn], [αn] be two sequences

Write xn = O(αn),

if there exist K and n0 constants, such that |xn| ≤ K|αn| when n ≥ n0.

Big O gives an upper bound on xn, to within a constant.

Example Figure 6 shows two sequences, as continuous functions of the pa-
rameter n. Their ratio at n is tending toward a constant, provided n is
sufficiently large. While it is not true that these functions are, to within a

18
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Figure 7: f(n) becomes insignificant with respect to g(n) as n→∞.

constant, the same order, there is n > n0 for which this is true:

lim
n→∞

∣∣∣∣
f(n)

g(n)

∣∣∣∣ ≤ K as n→∞ g(n) 6= 0.

here.

✷

On the other hand, we say that

f(n) = o(g(n))

if for each ε > 0 there exists an n0 such that 0 ≤ f(n) ≤ εg(n) when n ≥ n0.

lim
n→∞

f(n)

g(n)
= 0

i.e. f(n) becomes insignificant with respect to g(n) as n→∞, see Figure 7.

Figure 7 illustrates two functions that relate to each other in order in the
“little oh” sense.

19



Suppose xn → 0 and αn → 0. If xn = O(αn) then xnconverges to 0 as rapidly
as αn. If xn = o(αn) then xn converges to “more” than αn.

We also note that f(x) = O(g(x)) as x → ∞ means that there exists an r
and K such that |f(x)| ≤ K|g(x)| whenever x ≥ r. So, for example,

√
x2 + 1 = O(x) x→∞

since
√
x2 + 1 ≤ 2x when x ≥ 1

We note that f(x) = o(g(x)) x→ x∗ Thus

lim
x→x∗

∣∣∣∣
f(x)

g(x)

∣∣∣∣ = 0.

Exercise Show that:
n + 1

nz
= O

(
1

n

)
.

Show that e−n = O
(

1
nz

)
.

What can you say about the relative order between sin(x) and x5, as x→ 0?

sin x = x− x3

6
+

x5

5!
− x7

7!
· · ·

sin x−
(
x− x3

6

)
= O(x5) x→ 0

same as

∣∣∣∣sin x− x+
x3

6

∣∣∣∣ ≤ C|x5| x→ 0, C constant.

✷

Example: Consider the following functions

f(n) = en

g(n) = e2n

h(n) = 1 + 4e2n

k(n) = 5− en + n
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and show that h(n) = O(g(n)):

lim
n→∞

h(n)

g(n)
= lim

n→∞

1 + 4e2n

e2n

= lim
n→∞

1

e2n
+ 4

= 4

✷

and that k(n) = O(f(n)):

lim
n→∞

k(n)

f(n)
= lim

n→∞

5− en + n

en

= lim
n→∞

5

en
− 1 +

n

en

= −1.

✷

Consider h(n)× k(n) and g(n)× f(n):

lim
n→∞

h(n)× k(n)

g(n)× f(n)
= lim

n→∞

(1 + 4e2n)(5− en + n)

e2nen

= lim
n→∞

5 + 20e2n − en − 4e3n + n+ 4ne2n

e3n

= lim
n→∞

5

e3n
+

20

en
− 1

e2n
− 4 +

n

e3n
+

4n

en

= −4.
✷

We know that h(n)×k(n) = O(g(n))×O(f(n)) and we have just shown that
it is also O(f(n)× g(n)). This means that O(f(n))O(g(n)) = O(f(n)g(n)).

We can also see that f(n) = o(g(n))

lim
n→∞

f(n)

g(n)
= lim

n→∞

en

e2n
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= lim
n→∞

1

en

= 0.

If we consider f(n) + h(n) = en + 1 + 4e2n

lim
n→∞

f(n) + h(n)

g(n)
= lim

n→∞

en + 1 + 4e2n

e2n

= lim
n→∞

1

en
+

1

e2n
+ 4

= 4.

✷

So f(n) + h(n) = o(g(n)) +O(g(n)) = O(g(n)).

So far we have only considered the limit as n → ∞. We can also consider
the limit as ǫ→ 0. Consider

f(ǫ) = 1 + 4ǫ2

g(ǫ) =
√
ǫ+ 3ǫ3

h(ǫ) = ǫ(1−
√
ǫ)

We can see that h(ǫ) = o(g(ǫ)) (remember that we are now interested in
ǫ→ 0)

lim
ǫ→0

h(ǫ)

g(ǫ)
= lim

ǫ→0

ǫ(1 −√ǫ)√
ǫ+ 3ǫ3

= lim
ǫ→0

ǫ(1 −√ǫ)
√
ǫ(1 + 3ǫ

5
2 )

=

√
ǫ(1−√ǫ)
(1 + 3ǫ

5
2 )

= 0

We can also see that g(ǫ) = o(f(ǫ))

lim
ǫ→0

g(ǫ)

f(ǫ)
= lim

ǫ→0

√
ǫ+ 3ǫ3

1 + 4ǫ2

= lim
ǫ→0

√
ǫ(1 + 3ǫ

5
2 )

1 + 4ǫ2

= 0
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Now let us compare h(ǫ) and f(ǫ)

lim
ǫ→0

h(ǫ)

f(ǫ)
= lim

ǫ→0

ǫ(1−√ǫ)
1 + 4ǫ2

= 0.

So we can see that h(ǫ) = o(g(ǫ)) = o(o(f(ǫ))) = o(f(ǫ)).

Some rules for big O and little o notation are as follows. We have already
proven some of these rules in the examples above. See whether you can prove
the remaining rules.

O(o(f)) = o(O(f)) = o(o(f)) = o(f)

O(fg) = O(f)O(g)

O(f) + o(f) = O(f)

O(O(f)) = O(f)

O(f)− O(f) = O(f)

O(f) +O(f) = O(f).

1.5 Taylor Series

1.5.1 Power Series

A power series, which is a special series, is an infinite series. A power series
is of the form

S(x; x0) :=
∞∑

n=0

an(x− x0)
n.

Here an and x0 are constants. A power series may or may not converge. The
convergence depends on the form of the coefficients an, but it also depends
on where the center of the series x0 lies and how large the |x − x0| interval
is. There are a host of ways to test whether a series converges and over what
interval. These tests are described in a good calculus book.

The custom is that if we are truncating the series or defining a finite-term
series, that we specifically add the qualifier ”finite” but otherwise we under-
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stand the series to be infinite. The finite series is of the form

Sk(x; x0) =
k∑

n=0

an(x− x0)
n.

1.5.2 Taylor Series

A Taylor series is a special power series. It’s a power series expansion of a
function f(x) about a point x0:

f(x) =

∞∑

n=0

an(x− x0)
n = f(x0) + f ′(x0)(x− x0) +

1

2!
f ′′(x0)(x− x0)

2 +
1

3!
f ′′′(x0)(x− x0)

3...

+
1

n!
f (n)(x0)(x− x0)

n + ...

(if x0 = 0 the series is called a Maclaurin series). Clearly,

an =
f (n)(x0)

n!
, n = 0, 1, 2, ...

If a function depends on 2 variables x, y, say, then

f(x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

+
1

2!
[fxx(x0, y0)(x− x0)

2 + 2fxy(x0, y0)(x− x0)(y − y0) + fyy(x0, y0)(y − y0)
2] + ...

about x0 and y0. Here, fx := ∂f/∂x, etc.

1.5.3 Analytic and Entire Functions

If f(x) is given by a convergent power series in an open disc centered at x0, it
is said to be analytic in this disc. For x in this disc, f is equal to a convergent
power series:

f(x) =
∞∑

n=0

an(x− x0)
n.

Differentiating by x the above formula n times, then setting x = x0 yields
the coefficients

an =
f (n)(x0)

n!
.
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Hence the power series expansion agrees with the Taylor series. Thus a
function is analytic in an open disc centered at x0 if and only if its Taylor
series converges to the value of the function at each point of the disc. If f(x)
is equal to its Taylor series everywhere it is called entire.

Polynomial functions and the exponential function exp(x) and the trigono-
metric functions sine and cosine are examples of entire functions.

Examples of functions that are not entire include the logarithm, the trigono-
metric function tangent, and the inverse tangent. For these functions the
Taylor series do not converge if x is far from x0. Taylor series can be used
to calculate the value of an entire function in every point, if the value of the
function, and of all of its derivatives, are known at a single point.

1.5.4 Taylor’s Theorem

The Taylor series of f(x) is a polynomial expansion of the function. Let k ≥ 1
be an integer and let the function f : (R) → R be k times differentiable at
the point x0 ∈ R. Then there exists a function hk : R→ R such that

f(x) = f(x0) + f ′(x0)(x− x0) +
1

2!
f ′′(x0)(x− x0)

2 +
1

3!
f ′′′(x0)(x− x0)

3...

+
1

k!
f (k)(x0)(x− x0)

k + hk(x)(x− x0)
k,

with
lim
x→x0

hk(x) = 0.

More compactly
f(x) = pk(x) + hk(x),

where pk(x) is a polynomial of degree k, and hk(x) as above. If we have more
regularity on f(x) we can estimate

f(x)− pk(x).

We call this the remainder. Let f(x) be k + 1 times differentiable on the
open interval and continuous on the closed interval between x0 and x, then

Rk(x) := f(x)− pk(x) =
f (k+1)(ξ

(k + 1)!
(x− x0)

k+1,

for some ξ in between x and x0.
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2 COMPUTER ARITHMETIC

This section covers material that some years ago was extremely crucial. In
the days of less powerful computers, the expense of accurate arithmetic cal-
culations was high.

To appreciate the computational challenge we need to explain what we mean
by accurate: we mean that we can produce a number that is gets closer to the
target number, possibly with a commensurate (linear) increase in the storage
or the speed of the resources (i.e. bigger machine), and/or more execution
instructions.

Let’s discuss the challenges of performing even the most basic of arithmetic
operations (plus, minus, times, divide) on a computing machine (a machine
that can execute instructions and/or might have the ability to store infor-
mation).

First, there’s the problem of just representing numbers: you could store
these and read them off from the table every time you need them, or you
can compute every number you need (i.e., execute instructions that yield the
number, to a desired accuracy), or you can do a bit of both: store some, and
compute others.

How many numbers need to be stored? ”An undefined many,” is an under-
statement. Also, how do we store an irrational number accurately? we could
be clever here and say that we can store these as ratios of rational numbers.
Or we could store numbers symbolically, for that matter. We then rely on
programs or instructions to construct their representation and interpret how
these symbols get modified by arithmetic operations and/or what other sym-
bols they produce. We could even forgo storing anything. Just have a set of
instructions that could generate the symbols as we need them and operate
on them. It turns out that storing everything, even if it were possible, or
following instructions, no matter how long it takes, are not realistic practical
strategies.

We have developed a hybrid strategy to arithmetic computing. We create
devices with finite storage capacity, capable of executing a finite but large
enough set of instructions in a short time.
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Some of these devices are discrete: for example, the abbacus, the modern
computer. Some of these are analog: the balance scale, an analog electronic
calculator (made up of transistors, diodes, resistors, capacitors, and induc-
tors).

There are 5 crucial aspects to machine computation:

1. what is the smallest/largest values stored or computed (the band-
width),

2. what is the smallest discernible difference between close outcomes (the
resolution),

3. how does this resolution change with the range of values being mea-
sured? (the sensitivity or condition number),

4. the speed (for example, measured in operations per unit time, through-
put of information, etc).

5. the cost (for example, how much power the machine consumes, how
many person/hours it requires to run or to maintain).

An ideal analog device can generate a range of continuous values (think
of a mercury thermometer). The ideal discrete device is only capable of
generating values from a predefined table of values (think of a digital clock).
One could be tempted to say that an analog device might be better suited
to handle arithmetic with the reals. However, there’s a practical issue: an
outcome from the analog device needs to be sensed/interpreted, and thus the
output will depend on the precision of the sensing/interpretation device.

A discrete device has a certain set of numbers (an ideal discrete device can
have an infinite set of numbers, but there are finite jumps in value between
neighboring numbers. Real digital devices have a finite set of numbers, spaced
in equal or unequal intervals). Practical digital computers are not challenged
by measuring or interpreting of outcomes as in the analog case. These discrete
devices will have a fixed bandwidth, a resolution, and a sensitivity since
there’s nothing from stopping us from using a variable grid to make choices
on what numbers the device can represent. Virtually no discrete device is
operated as a pure storage medium: it is also endowed with the capability of
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performing instructions and these can have an effect on the range of numbers
it can represent.

In the days of simple machine calculators, small-word computer architectures,
calculating with numbers was a tricky business since only a small and finite
range of numbers could be represented on a small and finite-word machine.
Moreover, the resolution of the number system was quite poor (i.e. what
distinguished one number from a neighboring one as being different). Added
to that was the problem of there being many ways of approximating numbers
on the limited range. People devised very clever ways of calculating with ac-
ceptable precision, something that was especially important and motivated
by the war effort...before the second world war, the calculations concerned
projectile trajectories, for example: structural calculations in the large engi-
neering projects, such as the construction of Hoover Dam, and other public
works, as well as aeronautical and maritime engineering design calculations.
During the second world war there was a tremendous jump in the use of
technology and thus in the need for large scale calculations. Check out the
history of Los Alamos National Lab, for some historical details. These days
the storage capabilities and speed of processing instructions has grown: the
result is a bigger range of numbers and a finer resolution.

The goal of this section is to teach you the basics of how numbers are repre-
sented in machines; why approximation techniques need to be used; some sur-
prising facts about machine number representation (such as the fact that they
may not be evenly distributed along their range). We use these to understand
a very fundamental issue to scientific computing: loss of precision...what is
it, how do we identify it, how do we limit its effects, how does it affect what
choice of machine we use to get the computation done, how it affects the
design of computational algorithms.

Reals, integers, complex, are all represented with finite precision on practical
computers/calculators.

Floating Point Numbers: refers to a standard representation of numbers
on a computer. Take

2346 = 2.346 · 103
0.0007236 = 7.236 · 10−4

the decimal point moves or ”floats” as the powers of the radix change.
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We’ll use fp(x) to mean x in the floating point representation.

A floating point number representation system for numbers consists of 4
integers, plus a sign indicator:

β base or radix

t Precision

[L, U ] exponent range

The sign indicator is a ”bit” that indicates whether the number is positive
or negative (yes, if the mantissa is zero, the sign indicator is ignored).

Base β representation:

x = ±
(
d1
β

+
d2
β2
· · · dt

βt

)
βe = ± 0.d1d2d3 · · · dt × βe

︸ ︷︷ ︸
normalized representation

β base or radix

t Precision

[L, U ] exponent range

where 0 ≤ di ≤ β − 1, i = 0, . . . , t

L ≤ e ≤ U

So then the string of base β represented by
︷ ︸︸ ︷
d1d2 · · · dt ≡ mantissa or significand

and e ≡ exponent or characteristic The normalized representation refers to
the fact that the first entry to the left on the mantissa is a 0. As we will
see shortly, there are two equally acceptable choices for normalization when
dealing with base 2 arithmetic, or “binary” arithmetic.

In a computer, the sign, exponent, the mantissa are stored in separate
“fields,” where each field has a fixed width. These fields are measured in
”words,” which in turn have a prescribed number of bytes. Hence, a floating-
point number system is finite and discrete.

Schematically, a number is stored in a computer, using one bit for the sign,
N bits for the exponent, and M bits for the normalized mantissa. Hence,
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that a number will have a length of 1+N +M bits on a particular machine.
See Figure 8, for example.

Exercise: Show that the total number of machine numbers, for a machine
operating in base β with a mantissa of t digits is 2(β−1)βt−1(U +L+1)+1.
✷

Binary Representation: here β = 2 thus 0 ≤ di ≤ 2 − 1, or either 0 or 1.
Example −810 = −(2 · 2 · 2)10 = −1.00× 23

✷

Hexadecimal Representation: β = 16 0 ≤ di ≤ 15 where

di = 0, 1, 2, 3, · · ·9, A, B, C,D,E, F

Example

(23A.D)16 = 2× 162 + 3× 161 + 10× 160 + 13× 16−1 = 512 + 48 + 10 + 0.8125

= 570.8125

✷

Decimal Representation: β = 10 0 ≤ di ≤ 9

Example −(256)10 = −(2 × 102 + 5× 101 + 6× 100) = −256

Example

(
1

3

)

10

= (0.3333 · · ·)10 = 0 · 100+3 · 10−1+3 · 10−2 +3 · 10−3 · · · ✷

Example A reminder of basic conversion between a binary and decimal num-
ber.

(1101.0011)2 = 1 · 23 + 1 · 22 + 0 · 21 + 1 · 20 + 1 · 2−1 + 0 · 2−2 + 1 · 2−3 + 1 · 2−4

= 8 + 4 + 0 + 1 + 0 + 0 + 0.125 + 0.0625

= 13.1875

The normalized representation of the number in binary and in decimal are,
(0.11010011)2 × 24, and 0.131875× 102, respectively.

Example Here is a reminder of how to convert from decimal to binary forms:
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What is the binary form of x =
2

3
?

2

3
= (0.a1a2a3 · · ·)2
×2
4

3
= (a1.a2a3 · · ·)2 ⇒ a2 = 1, by taking the integer part of b.sides

4

3
− 1 =

1

3
= (0.a2a3 · · ·)2

×2
2

3
= (a2.a3a4 · · ·)2
×2
4

3
= (a2a3.a4 · · ·)2 ∴ a2 = 0, a3 = 1

4

3
− 1 =

1

3
= (0.a4a5 · · ·)2

×2
2

3
= (a4.a5 · · ·)2
×2
4

3
= (a4a5.a6 · · ·)2 ∴ a4 = 0 a5 = 1

2

3
= (0.10101 · · ·) = (1.0101 · · ·) · 2−1

How big are the fields used to store a floating point number? On every
computer, it’s different. Here are some examples,

Standard for vendors





System β t L U
IEEE HP, binary 16 bit word 2 11 −14 15
IEEESP, binary 32 bit word 2 24 −126 127
IEEEDP, binary 64 bit word 2 53 −1022 1023
IEEEQP, binary 128 bit word 2 113 −16382 16383
Cray 2 48 −16383 16384
HP Calculator 10 12 −499 499
IBM 3000 16 6 −64 63

Here HP refers to ”half-precision”, SP refers to “single precision”, DP “double
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precision” and QP to ”quadruple precision.” The IEEE 754-1985 standard
is the most commonly used standard, established in 1985, and it is used in
just about every high level compiler and machine on the market. It can be
adopted as a compiler option in high level language compilers (c, fortran,
C++, etc). The first 4 are standard configurations, shared by a number of
computers. The last 3 are products from large hardware companies which
spearheaded high performance computing, programmable calculators, and
multi-user main-frame computing. The point is that not everyone was using
the same standards.

Note: a 32-bit machine achieves double precision calculation via software.
DP calculations are usually slower than single precision calculations because
these are done by software, rather than in hardware: more calculations and
data movement is involved. Intel produces 64-bit chips and these are presently
embedded in just about any desktop or laptop.

Some important values in a floating point (fp) scheme:

• The smallest positive normalized fp number is called the “underflow
level” (UFL) and it equals βL.

• The largest positive normalized fp number is the “overflow level”, OFL
and it is equal to βU+1(1− β−t).

In binary, a floating point number is represented as

x = (−1)sq × 2m,

here s is the sign bit. Suppose we have a hypothetical computer (32-bit word
length). Figure 8 illustrates schematically how a floating point number is
stored. Computers use normalized binary representation (normalized, be-
cause this way the non-fraction part is always 0, or 1, therefore we do not to
have to store it: most commonly the implied 1 is used).

We decide to normalize with an implied 1 to the left of the radix point. Hence,
q = (1.f)2, s = 0 → negative, or s = 1 → positive. m = e − 127 which is
known as “8-bit biased exponent”. The range of 0 < e < (11 111 111)2 =
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sign
1 bit

exponent
8 bits

normalized mantissa
23 bits

radix point

Figure 8: Schematic representation of the storage on a machine that uses
32-bit word length. Here the mantissa is 24-bit in length, where the first bit
= 1 (is implied, and we’re going to use the convention that the first bit is an
implied 1). Each section is called a field -sometimes the sign bit is assigned
to the exponent field-.

28 − 1 = 255; the number 0 is reserved for ±0, and 255 is reserved for ±∞,
and/or NaN, “not a number”. Since m = e − 127, then −126 ≤ m ≤ 127.
The smallest positive number is 2−126 ≈ 1.2× 10−38 and the largest positive
number is (2 − 2−23) × 2127 ≈ 3.4 × 1038. The least significant bit is 2−23.
Notice that the number set would not be evenly distributed on this machine.
There are more numbers clustered around 0, since gaps of powers of 2 are
smaller near 0 and larger closer to 2. And of course, the number of floating
points available on this machine is finite!

Suppose we want to express 1/100 on a particular machine. Is this number
in the set available to the machine? (no) If not, what do we do?

✷

First some definitions:

Suppose we are comparing two numbers x and x̂. Typically, we think of x
as the “exact” number and x̂ as an approximation. We can then define two
types of error:

Def: Absolute Error is the absolute difference between x and x̂, |x− x̂|.

Def: Relative Error is the absolute error divided by the magnitude of x: |x−
x̂|/|x|.
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2.1 Rounding

Def: Machine Number a number that is exactly representable on a particular
machine (i.e., identical). If a number is not exactly representable as a floating
point number on the machine, then it must be approximated by a nearby
number.

The process of choosing a nearby number is called “rounding” and the re-
sulting error is referred to as the “rounding error”.

Two common strategies:

• Chopping: Cut off x at the tth digit: (a computationally cheap pro-
cedure).

• Rounding: rounding up/down a number, or in order to avoid bias, to
set up a procedure such that the number in question is assigned the
closest machine number.

Example: Here are two simple examples of chopping and rounding:

Take

x = 475.846 approximation uses a 5 digit
mantissa in base 10 arithmetic

t = 5 β = 10
x = 0.475846 · 103 normalized
fp(x̂) = 0.47584 · 103 chopping
fp(x̂) = 0.47585 · 103 rounding.
Take
x = 0.333333 · · ·
fp(x̂) = 0.33333 chopping
fp(x̂) = 0.33333 rounding.

IEEE Standard Systems

The IEEE standard supports several different rounding schemes, the most
important and useful of which is: Rounding-to-Nearest: approximate to the
closest fp number. If there’s a tie use fp number who’s last digit is even.
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If the hardware doesn’t have this form of rounding “built in”, then the arith-
metic must be done using software. This tends to slow things down to an im-
practical degree. Fortunately most processors now support IEEE and round
to nearest rounding in hardware.

To see how rounding to the nearest works, consider the problem of represent-
ing the fraction 1/3. The binary representation is 0.101010. . . . Using an fp
scheme this would fall between two machine numbers 0.10101010. . . 10 and
0.101010. . . 11. It is nearer to the latter, so it would be rounded up. In cases
where the number to be rounded is precisely midway between two machine
numbers, the IEEE round to nearest scheme rounds to the machine number
whose mantissa’s least significant bit is a 0 (round to even on tie). Why is
this done in this way? Why should this have ever have been a concern?

The problem this approach avoids is bias in the rounding error. If we follow
the usual convention of always rounding up on a tie, there is a tendency to
overestimate positive numbers (and underestimate negative ones) on average.
You might feel that a tie is a very rare event, and thus can be ignored.
This would be true if we were always working with arbitrary real numbers
that needed to be rounded. However, in practice, most of the rounding is
performed on numbers that are the result of arithmetic with other machine
numbers. In these cases a tie is not very rare. (Why? Think about what
happens when you add .10111011 to .10100000 using an 8 bit mantissa.)

In order to correctly round to the nearest machine number, at least two extra
binary digits of information need to be generated, to distinguish between the
four different cases: 1) the result is closer to the upper number, 2) the result
is midway between, 3) the result is closer to the lower number 4) the result
is equal to the lower number. It turns out that you need one more bit to
deal with the possibility that the result of the operation is denormalized (the
most significant bit is zeroed), and must be shifted before rounding.

As you can see, the issue of rounding is somewhat subtle, and quite a bit
of effort has gone into devising good methods and hardware to deal with it.
Details can be found in the IEEE standard.

There are libraries that can be gotten from netlib to correctly do rounding.
Also libraries for “gradual underflow” exist2

2Gradual underflow preserves more mathematical identities. For example, x − y = 0
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What are 2 nearby numbers on the hypothetical machine discussed earlier?
Recall, we have a 24 bit mantissa -but 23 bits to worry about- with a 1
implied to the left of the radix point:

x− = (1.0101 · · ·010) · 2−1 ← chopping

x+ = (1.0101 · · ·011)︸ ︷︷ ︸
24bits

·2−1 ← rounding up

Which

{
x+do we take for x̂ of

2

3
?

x−

Choose the closest:

x− x− = (0.1010 · · ·)2 · 2−24 =
2

3
· 2−24

x+ − x = (x+ − x−) + (x− − x) =
1

3
· 2−24

∴ take x̂ = x+.The absolute roundoff?

|x̂− x| = 1

3
· 2−24

relative roundoff
|x̂− x|
|x| =

1
3
· 2−24

2
3

= 2−25

2.2 Machine Precision:

Accuracy of a floating point system: use unit roundoff, machine precision,
machine epsilon.

εmach = β1−t for chopping

εmach =
1

2
β1−t for rounding

imples x = y with gradual underflow. The former can hold without the latter with
flush-to-zero. The performance impact is not obvious. Many ”modern” processors do not
accelerate arithmetic involving subnormal numbers, so gradual underflow seems slow. The
additional identities give more room for programmers and compilers to optimize, however.
A longer answer involves preserving relative error bounds in the face of underflow. Gradual
underflow keeps simple codes robust.
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The machine epsilon determines the maximum possible relative error in rep-
resenting a number as floating point:

|fp(x)− x|
|x| ≤ εmach

Not to be confused with UFL : 0 < UFL < εmach < OFL, i.e. with
underflow and overflow.

Example For IEEE single precision: εmach = 2−24 ≈ 10−7 “7 decimal digit
precision”
double precision: εmach = 2−53 ≈ 10−16 sixteen decimal precision”

For chopping: let fp(x) = x(1± ε), ε(x) in general

Assume (+):

|x− fp(x)| = (0.0 · · ·0dtdt+1dt+2 · · ·)β × βe

= (0 · dtdt+1dt+2 · · ·)β × βe−(t−1) ≤ βe−(t−1)

(0.dtdt+1, · · ·)βe−(t−1)

(0.d1 · · ·)βe
=

(0.dtdt+1, · · ·)
(0.d1 · · ·)

β−(t−1) ≤ β−(t−1)

|x− x(1 + ε)|
|x| =

|xε|
|x| = |ε| ≤ β−(t−1)

exercise: Work out the rounding case. ✷

Some examples: εmach for the IBM 3000: ε = 16−5. For the old CDC 6000:
ε = 2−47

Exceptional Values:

IEEE provides values for “exceptional” situations (floating point exceptions):

• ”Infinite” Inf : divide n/0. There are 2 infinities, positive and
negative. Note: in matlab: 1+Inf=Inf (it’s propagated sensibly)...this
is not always the case on high level languages.

• ”Not a Number” signified by NaN : 0/0, 0*Inf, Inf/Inf (Could be
used by compiler to indicate that array is not defined). There are in
fact 2 types of NaN’s. A quiet NaN and a signaling NaN. The latter of
these carries a ”bundle” which is useful in diagnostics/debugging.
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✷

There are ”signed zeros” (+0 and −0, but these are not floating point ex-
ceptions).

2.3 Propagation of Round-off Error in Arithmetic Op-

erations

Significant Digits:3 used often in place of relative error, to convey the accu-
racy of a number x̂, an approximation of the exact number x.

We say that x̂ has m significant digits with respect to x if m is the largest
nonnegative integer which

|x− x̂|
|x| ≤ 1

2
β1−m.

In decimal notation this amounts to 5 · 10−m.

Example Let x = 0.02136 x̂ = 0.02147 and assume we are using decimal
notation: β = 10. Find the accuracy of x̂:

|x− x̂|
|x| =

0.00011

002136
≈ 0.00515 ≤ 5 · 10−2

Thus x̂ has 2 significant digits with respect to x.

✷

We’ve discussed the issue of representing numbers on a machine. We now
bring up the following question: how is the accuracy of calculations affected
by the use of approximate numbers?

3A useful theorem for binary numbers:
Theorem (Loss of Precision of Binary Numbers): If x and y are positive normalized

floating-point binary numbers such that x > y and

2−q ≤ 1− y/x ≤ 2−p

then at most q and at least p significant binary bits are lost in the subtraction x− y
✷
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Let the symbol * represent {+,−, /, .}, i.e. any of these operations, and let
us assume that the calculations are being done on a finite precision floating
point system. Let x be an exact real, x̂ a representation (approximation) of
it. Let fp(·) represent the operation whereby an exact number is converted
into a floating point number on a finite-precision machine.

Then the following defines the ”propagated” and the ”round-off” error:

(x ∗ y)− fp(x̂ ∗ ŷ) = (x ∗ y − x̂ ∗ ŷ)︸ ︷︷ ︸
propagated error

+ (x̂ ∗ ŷ − fp(x̂ ∗ ŷ)︸ ︷︷ ︸
round off

✷

Example Consider the operation of a product of 2 numbers x × y using
approximations of the numbers x and y to 3-digit rounding: the approximate
quantities are x̂ = 4.34 and ŷ = 1.02, using 3-digit rounding.

The product of these, to 3-digit rounding: fp(x̂ × ŷ) = fp(4.34 × 1.02) =
fp(4.4268) = 4.43. Thus, the ”roundoff” error is 0.0032.

To obtain the ”propagated” error:

|x− 4.34| ≤ 0.005

|y − 1.02| ≤ 0.005

this means 4.335 ≤ x ≤ 4.345 1.015 ≤ y ≤ 1.025. Thus, 4.400025 ≤ x×y ≤
4.556125. The propagated error is thus −0.129325 ≤ x×y−x̂× ŷ ≤ 0.026775
✷

2.4 Some Types of Errors

2.4.1 Rounding Error

Just discussed. This type of error is the result of the inexact representation
of numbers and the arithmetic operations upon them. This is usually due
to finite precision and/or due to the approximation of all numbers on a
machine in terms of a finite set of numbers (machine numbers). One of the
most critical types of rounding errors are ”loss of significance” errors.
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Cancellation of significance, or loss of significance: This can occur when dif-
ferencing nearby quantities, dividing very large by very small number, etc.
The key thing is to recognize when this might happen in a calculation and
figure out an equivalent way to do the calculation that is more stable, which
in this case means without unduly loss of significance:

Example Suppose you want to find the roots of the quadratic polynomial
equation:

ax2 + bx+ c = 0.

The roots are x = −b±
√
b2−4ac
2a

.

There are several problems that can occur:

• −b±
√
b2 − 4ac could underflow.

• with regard to b2 − 4ac (assume it is positive),

– b2 ≈ 4ac could underflow.

– a, b, c could be of very disparate size, thus could underflow/overflow.

The key is to manage b2 and 4ac correctly, i.e. so differencing of nearby
quantities is done carefully. Rescaling, the two roots,

xi =
−b+

√
b2 − 4ac

2a

(−b−
√
b2 − 4ac)

(−b−
√
b2 − 4ac)

=
b2 − (b2 − 4ac)

−2a(b+
√
b2 − 4ac)

b < 0

x1 =
−2c

b+
√
b2 − 4ac

x2 =
−2c

b−
√
b2 − 4ac

So, for b < 0, use

x1 =
−b+

√
b2 − 4ac

2a
, x2 =

2c

−b+
√
b2 − 4ac

.

If b ≥ 0, then

x1 =
−b−

√
b2 − 4ac

2a
, x2 =

2c

−b−
√
b2 − 4ac

.
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So let’s see how this works, using 4-digit arithmetic with rounding. Take
a = 0.05010 b = −98.78 c = 5.015. The roots, computing using 10-digit
arithmetic are: 1971.605916 and 0.05077069387. Using 4-digit arithmetic
b2 − 4ac = 9757 − 1.005 = 9756, and

√
b2 − 4ac = 98.77. If we use the

standard formula:

98.78± 98.77

0.1002
=

{
1972
0.0998 100 % error due to cancellation.

Using the other formula

10.03

98.78± 98.77
=

{
1003← large error
0.05077

So now that we know what can go wrong, we can code things in such a way
so as to query the sign of b and choose the alternative formula that avoids
the cancellations. ✷

Exercise Consider the calculation of exp(−∆H), where ∆H := H1−H2, and
H1 =

∑N
j=1 P

2
j , and H2

∑N
j=1Q

2
j . Here, N is a very large integer. Consider

the four situations, when the set of {P}Ni=1 and {Q}Ni=1, are both less than 1,
both much greater than 1, one much greater and one much smaller than 1,
with respect to loss of significance. Devise algorithms that minimize loss of
significance for each case. ✷

2.4.2 Truncation Errors

These will be discussed in connection with every topic we will consider next.
Examples of these errors are due to truncating series, replacing derivatives by
differences, replacing function by a simpler polynomial, terminating iteration
before convergence.

The truncation error usually dominates over the rounding error (is more
prevalent or larger).
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3 COMMENTS ON SCIENTIFIC COMPUT-

ING

3.1 Code Design and Construction

First, some basic words about coding.

1) Decide on the solution scheme and make every attempt to make sure
that it works. The most time consuming bugs to fix are mathematical,
not computer bugs. The more work you do before actually coding
something in order to assess whether it is going to work, the more time
you’ll save yourself in the long run...some of the best computing is done
AWAY from the computer!

Use matlab to try out the mathematics and the algorithm. Using mat-
lab allows you to quickly debug and diagnose whether an algorithm
works In addition, it also forces you to experiment on small problems,
which will speed up the debugging of the mathematical issues. Once
you have the scheme mathematically debugged, you can easily trans-
late the code to C, Fortran, C + +, etc. At this point you can focus
on computer issues, and with a matlab code, you have a benchmark to
which the new code can be checked against.

I consider all programming languages equally terrible, or equally good:
the key is using the best features of all of them, which can be done.
So, don’t be religious about programming languages, or afraid to try
other languages.

2) Decide on the algorithm and the extent of the how robust you want to
make the code based on the following criteria: (a) is this a one-shot
code? or (b) is this a production code? Why this decision is very
important is this: you want to get to results as quickly as possible.
You factor in the amount of time it will take to compute the answer,
but also the time it takes you to design a code. For example, if you
work on a code for a year just to maximize the speed of a code you
should remember that the code is now one year old by the time you
use it and it might be better to spend only one month on the code
and already have 11 months in the balance that you can use to run
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the code. In these cases, one-shot code is preferred. On the other
hand, a production code is preferred if the code will be used a great
many times, or by people other than yourself. In this case, software
engineering should be geared to increase its efficiency and/or to make
it robust so that others can use it with minimal problems.

a) In the case of a one-shot code, you want to provide accurate results.
It will be used to get results quickly and then the code is no longer of
use...if your programming is very modular, however, each module can
be stored for later use in your “Tool-kit” should you need it at some
later time.

b) Software design is crucial → take the time to optimize both the oper-
ation and the scheme.

3) Make estimates of computing and storage requirements as early as pos-
sible.

4) Write code on paper and do an analytical estimation of its properties.

5) Implement using matlab (forces you to keep problem small). As I said,
the other nice thing you’ll get from the matlab code is a good test to
benchmark your bigger codes once they are built.

6) Do not reinvent the wheel → use (good) developed code, when avail-
able. There’s tons of this stuff out there. Mostly developed by special-
ists in each particular algorithm or mathematical area.

7) Keeping a modular design enables you to develop a library of software.

8) Date and put your name on each part of your code. Do not erase a
piece of code until you know that the next version is always is superior,
but keep them organized. You might want to have a directory (which I
call the sandbox) in which I dump all the old versions. I do a sandbox
cleanup periodically. I also carry a simple “diary” in which I enter
comments on the code’s progress. This is especially helpful if I have
to leave a particular project for an extended period of time and then
want to remember as quickly as possible where I left off.
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9) A good rule of thumb is not to make any function or subroutine more
than 1 page in length. This forces you to keep some modularity and
makes program debugging a less messy affair.

10) Yes, comment thoroughly your code. However, I usually make the
thorough comments ONLY after I know the code works well. Often
times you put in comments that after the code has been worked on are
no longer relevant...these comments just add confusion.

11) Use descriptive names for variables and don’t make them single let-
ters...these are a pain to find using an editor.

12) Use complex coding only if it achieves an improvement on storage or
speed. Gratuitous clever coding is useless.

10) Write README’s with usage instructions, changes, bugs, etc.

11) When working with others on a code, a useful thing to do is for there
be, at any time, a “keeper of the code”. You declare yourself this person
and your code and only your version is the official one...all others will
defacto have now “old” codes, regardless of whether your codes happen
to be identical.You are only allowed to make changes on the code if
you are the keeper of the code and must “release” the code to the new
keeper, if this other person will make changes. By the way, there are
commercial and free-ware software packages that perform this routine
(and keeps records).

12) Test, test, test your code.

3.2 The Big Picture on Numerical Schemes

What is the goal in the design of good numerical schemes? Solving problems
EXACTLY is sometimes not possible and/or not even sensible (e.g. a chaotic
system). What you want to do is to produce a numerical approximation
which will have the property that the more you push it, the “better” the
answer gets...i.e. the closer it gets (in some norm) to the solution.

The most important qualities of a good numerical schemes are:
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• Convergence: you want the answer to approach the true solution as the
algorithm or calculation is refined.

• Stability: you want your algorithm or calculation to be robust. That
is to say, small changes in the input (or parameters) should not lead to
large changes in the output.

• Efficiency: roughly speaking, there are two resources you’ll use: time
(as measured in compute time) and storage (memory). You want to
get an answer with reasonable usage of these two resources.

We will discuss these throughout the year in different contexts. Same with
stability, but it is appropriate to mention this detail at this point:

Stability:

let ε= initial error, then, after n steps:

|En(ε)| ≈ C n ε linear growth in n is acceptable.

|En(ε)| ≈ knε k > 1 exponential growth is not acceptable.

See Figure 9.

Most problems dealing with continuous variables (derivatives, integrals, etc)
cannot be solved, even in principle, in a finite number of steps. So we need to
find methods that find these approximately: Recast problem so that approx-
imate problem (i.e. solved in a finite number of steps) is “close enough” or
within some reasonable error tolerance. Sometimes it is impossible to reached
a desired error tolerance due to the finite precision nature of machines.

In most cases we design a method of solution which is “convergent” to the
exact solution. In order to assess whether a method is convergent we need
to estimate its error and/or we need to define a sensible quantity which
estimates its rate of convergence. Convergence may also depend on how the
system is prepared.

Moreover, if a method is to be useful it should solve the problem efficiently,
i.e. in the least amount of time and it must be reasonable with respect to
computer resources.
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Figure 9: linear growth is fine: if you perturb a stable system you expect
at most a linearly proportional response to the bump, but not anything
polynomial or exponential.

Example Solving a very large Ax = b can be solved by direct methods, or
iterative methods, as we shall see. In general an iterative method owes its
existence to the unacceptable cost in either time or computer resources.

General Strategy

As we said, we will replace the problem with an approximate one with one
with closely related solutions. For example, replace integrals with finite sums,
replace derivatives with finite differences, replace matrices with simpler ma-
trices; complicated functions with sequences of polynomial, differential equa-
tions with difference algebraic equations, nonlinear problems with linearized
approximations, high-order differential equations with low order difference
equations, and invariably on finite precision machines, infinite-dimensional
spaces with finite-dimensional spaces.

This replacement must be done while preserving the solution in some sense.
What should be preserved? It depends on the problem, as we shall learn.

Sources of Approximations in Scientific Computation
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Before Computing:

Modeling (equations capturing some aspect of the physical world.
Empirical Measurement (Lab data): finite precision, small sample size, ran-
dom noise, etc.
Fundamental scientific theory and mathematical theorems.

At the computing stage

Error Analysis





Approximation: replace a complicated process by a simpler process
Truncation or discretization.
Rounding: computer representation of real numbers
and arithmetic operators.

The aim in practical numerical analysis is seldom to compute exactly. In-
stead, it is about converging computing that is stable, efficient, and for which
errors are estimated as exactly as possible.

3.2.1 Reporting Errors:

With practice we will be able to report either error in terms of either absolute
or relative terms. Depending on the context presented by the problem we
are trying to solve, it might make more sense to report the error in terms of
just distances, and in some others, in terms of normalized distance. Hence,
we have

Absolute and Relative Error

Abs error = approximate value – true value (could use absolute value)

Rel error = absolute error
true value

You must always define what these are, as the above definitions are not
standardized.

A situation that illustrates how a dilemma arises in reporting errors is the
following: suppose you have an estimator of the number of bacteria in a
petri dish. If the estimate is that the error, defined as the abolute difference
between the estimator device and the true population 103, does this mean
that the estimator is an innaccurate device? Well, in this context, it is
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probably more sensible to report a relative error, normalizing the absolute
error by the typical populations that this device will normally encounter. An
estimate of this typical population could be the actual population. Suppose
that this population was in the 106 range. In that case the relative error
is 10−3. Which error would make more sense to use as a qualifier to the
accuracy of the estimator? It is up to you.

✷

4 SENSITIVITY AND CONDITIONING

The stability of a computation affects the accuracy of the outcomes because
it introduces a certain degree of uncertainty. Roughly speaking, inaccuracies
in the input or in the methods we use to compute lead to inaccuracies in
the output. A stable calculation is one in which uncertainties grow at most
linearly, rather than exponentially, with the number of operations, or the
sources of imprecision. If they grow exponentially, we say that the computa-
tion is ”sensitive,” and we might convey this by computing its ”conditioning.”

Identifying/computing the condition number of the algorithm is calculation,
not only because it tells us something about the calculation, but because it
is often the case that there might be several ways to compute the same thing
and one should choose the most stable alternative, keeping in mind other
constraints (for example, the size of the machine, the cost of the computation,
etc).

What do we mean by computation? we mean the choice of arithmetic op-
erations, the precision in which we choose to work in, the algorithm, the
formula of the computation itself, the software implementation. We are con-
cerned with the stability of calculations. These are of concern because we
are generally computing approximately:

• because we are using approximations to numbers (we already discussed
this), due to finite-precision/finite-memory.

• we might be using approximating formulas (for example, we are using
a truncated Taylor series),
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• we might be taking a finite sequence as an approximation to a full
(perhaps infinite) sequence.

• we are using an approximate algorithm (we require efficiency as well,
so we might settle for a an algorithm that gives approximate answers
but is faster than an alternative).

• we are using a particular piece of software.

Hence, when we compute the sensitivity of a computation, we describe what
the computation is sensitive to: for example, a computation may be sensitive
to finite precision, it might be sensitive to the number of iterations you per-
form to reach a result, it might be sensitive to the dimension of the problem
you are computing. It might also be sensitive to the choice of algorithm you
opt for in accomplishing the computation.

We need to distinguish between the stability of a mathematical ”formula” or a
physical law, or desired outcome, and the stability of its computation (we are
focusing on the computation: the algorithm and its computing machinery).
We usually report the total sensitivity of a computation, as the sensitivity to
the manner in which it is computed plus the sensitivity of the formula itself
(to inputs, to parameters, etc).

Consider the following: suppose your company is asked to build a structure
that moves motor vehicles across a road, in such a way as to not disrupt the
other road’s traffic. The desired outcome is to move cars and trucks from
one side to the other side of the road. There are several ways to do this,
one might be a bridge, another a tunnel. Given your expertise and your cost
estimate, you choose to deliver a bridge: this is already a sensitivity calcu-
lation outcome: the method called ”tunnel” is more expensive (let’s pretend
it is) and it is sensitive to your knowledge base than the ”bridge” method,
meaning that the outcome may be less accurate. In this case accuracy is
defined as making it possible for any motor vehicle to make it from one side
of the road to the other (regardless of the expense or the challenge in doing
so). So the method we will use is the bridge. But there are many ways to
build this bridge and many different materials that can be use in building
it, (i.e., there are many ways to ”compute” or achieve this). In this case
the sensitivity should be measured with respect to the traffic on the bridge.
We don’t want a sensitive bridge, meaning that the perturbations due to the
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passage of a little moped should not lead to exponentially large deflections
of the bridge. However, we might be content with the bridge deflecting in
a commensurate way to the amount of traffic (so long as it is reasonably
accurate, i.e. most motor vehicles will make it over the bridge): if increases
in the input force lead to linear increases in the bridge vibration, we say that
the bridge is well-conditioned or stable to traffic density perturbations. Sure,
a bridge that does not deflect at all due to traffic would be terrific, but im-
practical or impossible; but more importantly, not worth considering, if the
vibrating alternative is reasonably accurate (sure, you can always find a load
that will break the bridge). The upshot is that the stability of this bridge
will depend on the choice of design (hanging, girded, cantilevered, etc), and
the choice of materials you put into it.

How do we quantify sensitivity? via a condition number, for example. It
turns out that it is up to you to propose a sensible notion of sensitivity for
each problem you work on, mostly guided by common sense and context. The
condition number is a single number that conveys sensitivity, but you might
imagine that a single number cannot completely convey the complexity of
the sources of instability. Moreover, the condition number does not discern
between instabilities due to the computation and the desired outcome, unless
these two can be approximated by a linear relation.

4.0.1 Summary: Stability Consistency and Accuracy

Accuracy: a measure of the closeness of computed to the true solution.

{
Stability: used to categorize problems and algorithms
Conditioning: categorizes algorithms and methods

An algorithm is stable if small perturbations to the input lead to small
changes in the output.

An algorithm should also be consistent: the algorithm might not be comput-
ing what you think it is. On simple problems this is not hard to verify, but
it is not trivial to verify in complex cases.

Stable and Consistent ⇒ Convergent
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If the algorithm is stable, the output is exact for a nearby problem but
the solution to a nearby problem is not necessarily close to the solution to
the original problem UNLESS problem is stable. Therefore, inaccuracy can
result from applying a stable algorithm to an ill-conditioned problem as well
as from applying an unstable algorithm to a well-conditioned problem.

If an algorithm is convergent, then the algorithm can achieve arbitrarily close
outputs to the true solution, by increasing the resolution, storage, and the
precision of the computation.

So fundamental to scientific computing is to estimate how accurate a com-
putation is. Doing so requires us to show that our methods are stable and
consistent, and that the more computing time and higher resolution leads to
increasingly accurate results.

✷

In what follows we will consider simple notions of sensitivity (linearized sen-
sitivity). A natural way to qualitatively determine the effect of an individual
error on the final result might be through derivatives. Here we are going to
compute the sensitivity of the mathematical formula f(x):

Compute f(x) (for simplicity a C2 function) and use x̂ (assume x̂ close to x
and within the range of values for which f(x) has the above continuity)

f(x) = f(x̂) +
df(ξ)

dx
(x− x̂) by the mean-value-theorem

x ≤ ξ ≤ x̂

Abs (f(x̂)) = |f(x)− f(x̂)| = f ′(ξ)|x− x̂| ≈ f ′(x̂)· Abs (x̂)

Example f(x) =
√
x ∴ f ′(x) =

1

2
√
x
∴

Abs (
√
x̂) ≈ Abs(x̂)

2
√
x̂

. For relative error:

Rel (
√
x̂) =

∣∣∣Abs((x̂)
1/2)√

x̂

∣∣∣ ≈ Abs(x̂)
2
√
x̂
· 1√

x̂
= 1

2
Rel (x̂)

Hence, since the relative error in
√
x̂ ∼ 1

2
relative error in x̂ thus

√
is a

safe operation.
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✷

Suppose result depends on more than one variable, say x, y?

f(x, y) = f(x̂, ŷ) +
∂f

∂x
(x̂, ŷ)(x− x̂) +

∂f

∂y
(x̂, ŷ)(y − ŷ)

∴ Abs(f(x̂, ŷ)) ≈ |∂f
∂x

(x̂, ŷ)|Abs(x̂) + |∂f
∂y

(x̂, ŷ)|Abs(ŷ)

Example Suppose you are building capacitors out of series of capacitors. You
know that the capacitance z of a series of capacitors x and y is

z =
xy

x+ y

Suppose you have the following capacitors:

x̂ = 2.71µF ŷ = 3.14µF to 3 digits ∴ Abs(x̂) = Abs(ŷ) = 0.005µF

computed ẑ =
x̂ŷ

x̂+ ŷ

z = f(x, y) ⇒ ∂f

∂x
=

y2

(x+ y)2
∂f

∂y
=

x2

(x+ y)2

fx(x̂, ŷ) ≈ 0.288103 fy(x̂, ŷ) ≈ 0.214599

∴ Abs(f(x̂, ŷ)) ≈ 0.288103 · Abs(x̂) + 0.214599 · Abs(ŷ) ≈ 0.00251351

✷

Some problems are difficult to solve accurately not because an algorithm is
ill-conceived but because of some inherent property of the problem. Even
with exact arithmetic, the solution may be highly sensitive to perturbations.

A problem is insensitive or well-conditioned if the relative change in the input
causes a reasonably commensurate change in the output.

Otherwise the problem is sensitive or ill-conditioned

One qualitative way to assess sensitivity is by computing a “condition num-
ber”. The condition number ≡ Cond

Cond =
| relative change in solution|
|relative change in input| =

|[f(x̂)− f(x)]/f(x)|
|(x̂− x)/x|
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where we’re assuming that x̂ ≈ x.

Therefore,

Cond → 1 ill-conditioned
Cond ≪ 1 well-conditioned.

✷ In practical terms, however, it is
not unusual to find that a condition number in the order of a decade is not
at all bad. In systems of equations, in particular, the condition number can
grow quite a bit and be overly pessimistic.

Example Evaluating a function: consider propagated data error when f is
evaluated at x̂ = x+ h instead of at x:

Abs error = f(x+ h)− f(x) ≈ hf ′(x)

Rel error =
f(x+ h)− f(x)

f(x)
= h

f ′(x)

f(x)

Cond (x) =

∣∣∣∣
hf ′(x)/f(x)

h/x

∣∣∣∣ =
∣∣∣∣
xf ′(x)

f(x)

∣∣∣∣

Suppose f(x) = ex

Absolute error ≡ ea = ex+h − ex ≈ hex

Relative error ≡ er =
ex+h − ex

ex
≈ h

ex

ex
= h

Cond(x) = |x|

✷

Example: Here’s an example of a very sensitive operation. Computing the
cosine of a number! You might wonder what’s so sensitive about that? well,
this answer illustrates the fact that not only the operation is important, but
also the range of values x of the input.

Compute cosx where x ≈ π/2
x̂ = x+ h

ea = cos(x+ h)− cos(x) ≃ −h sin(x) ≈ −h

er = −h tan(x) ≈ ∞
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∴ small changes in x near
π

2
cause large relative changes in cosx regardless

of the method used in the computation.

cos(1.57079) = 0.63267949 · 10−5

cos(1.57078) = 1.63267949 · 10−5

∴ relative change in the output

ratio of inputs =1.00000636

ratio of outputs =2.5805791

✷

OK, so now we’re ready to define a condition number more precisely. Again,
this is a definition, not a mathematical notion, and hence, it has a cer-
tain amount of inherent idyosyncracies...namely, for large scale systems, it is
overly pessimistic.

Let us think of the problem as an engineer would: we have an input x, which
is a vector of size m and an output y = f(x) which is a vector of size n.
The black box is f . We would like to know if we make small changes on the
input x, what kind of changes do we obtain in the output y? Are they large
changes, or are they proportional to the size of the perturbation? (say, if the
input plus perturbation was x+δx, where δx is also an m dimensional vector
of small size, is the perturbation in y, call it δy which is of size n, is δy to
within a multiplicative constant the same as δx? If so, we say the problem
is very well conditioned...how much ill-conditioning we tolerate is a matter
of experience and context.

Take the case when the have y = f(x), where x and y are scalars. We assume
that f ′(x) exists, and we write, by Taylor’s theorem,

δy = f(x+ δx)− f(x) = f ′(ξ)δx,

where ξ is some value between x and x+ δx. We then form

δy

y
≈ xf ′(x)

f(x)

δx

x
.
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The approximation happened in where we evaluate the derivative...we are
assuming that δx is small but finite, by the way. The relative error is just
the absolute value of this:

||δy
y
|| ≈ Cond(f ; x)|δx

x
|.

where the CONDITION NUMBER is

Cond(f ; x) = |xf
′(x)

f(x)
|.

It is clear from this definition then that the condition number not only de-
pends on the function f itself, but also it depends on the value(s) of x which
are used as input to the black box f .

✷

Example

Consider the function y = f(x) = 1/x. The derivative of this function is

f ′(x) =
−1
x2

.

¿From this we can calculate the condition number of the function

Cond(f ; x) =

∣∣∣∣
xf ′(x)

f(x)

∣∣∣∣

=

∣∣∣∣∣∣∣

x · −1
x2

1

x

∣∣∣∣∣∣∣
= 1

So for this function f(x) = 1
x
the condition number is independent of the

value of x. This may seem strange as we know that f(x) ‘blows up’ near zero

but it is important to remember that we are dealing with relative error
δx

x
which could be large if x is sufficiently small.

Now let’s consider the function

y = g(x) = sin(x)
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Condition number for sin(x)

Figure 10: Condition number plotted against x for sin(x)

which has the derivative
g′(x) = cos(x).

The condition number is

Cond(g, x) =

∣∣∣∣
x cos(x)

sin(x)

∣∣∣∣ =
∣∣∣∣

x

tan(x)

∣∣∣∣ .(1)

In this case the condition number is dependent on the value of x. Figure 10
shows the condition number plotted against x. For small values of x (e.g.
x ∈ [−3π

4
, 3π

4
]) the condition number is reasonable. However, the condition

number goes to infinity as x approaches ±π. This is because sin(±π) = 0
so the values of y will be very small giving the potential for large relative
errors in y. It seems strange that we do not get the condition number going
to infinity for x close to zero as well because sin(0) = 0. But because both
x and y are small at this point, their relative errors are comparable.
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Now lets look at a polynomial function

h(x) = 2x2 + x− 1

which has the following derivative

h′(x) = 4x+ 1.

This gives the condition number

Cond(h; x) =

∣∣∣∣
xh′(x)

h(x)

∣∣∣∣

=

∣∣∣∣
x(4x+ 1)

2x2 + x− 1

∣∣∣∣

=

∣∣∣∣
4x2 + x

2x2 + x− 1

∣∣∣∣ .

Again, this condition number is dependent on x. Figure 10 shows the con-
dition number plotted against x. For values when h(x) ≈ 0 (x close to −1
and 1

2
) we have a very large condition number. For x close to zero, however,

the condition number is close to one and for large values of x the condition
number is close to two. To understand why the condition number is close to
2 for large x consider the function k(x) = xn. Its derivative is k′(x) = nxn−1

giving a condition number of

Cond(k; x) =

∣∣∣∣
x · nxn−1

xn

∣∣∣∣
= |n|

Place here the stuff for more advanced students that works out the
m×n dimensional case. Also work out the estimate when there are
roundoff errors.

We will revisit the condition number concept once more when we discuss
the solution of linear algebraic equations. Note: some software will report
a sensitivity of the calculation. But be very aware of how this number is
defined (or as is the case in Lapack and others, that they do not report the
condition number as defined above, but the inverse of it.
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Figure 11: Condition number plotted against x for h(x) = 2x2 + x− 1
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Figure 12: Schematic for the forward and backward error analysis.

4.1 Backward Error Analysis

The idea of perturbing the input and looking at the outcome in the output
is called forward perturbation (error) propagation. In some cases it can lead
to an overestimate of the error encountered in the practical setting. Why
this is the case is beyond the scope of these notes. We will limit ourselves
to stating that there is an alternative approach to sensitivity analysis, called
backward error analysis. See Figure 12. In backward error propagation we
ask: How much error in input would be required to explain all output error?
Backward error propagation assumes that approximate solution to problem
is good IF IT IS THE exact solution to a “nearby” problem.

Example Want to approximate f(x) = ex. We evaluate its accuracy at x = 1.

f(x) = ex = 1 + x+
1

2!
x2 +

1

3!
x3 · · ·

f̂(x) = 1 + x+
1

2!
x2 +

1

3!
x3
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Forward error = f̂(x)− f(x)

Backward Error: 1) Find x̂ such that f(x̂) = f̂(x)

f(x̂) = ex̂ ∴ x̂ = log(f(x̂)) = log(f̂(x))

f(x = 1) = 2.718282 f̂(x) = 2.666667, to seventh decimal place.

x̂ = log(2.666667) = 0.980829

The following are different and cannot be compared:

Forward error f̂(x)− f(x) = −0.051615 (OK)

Backward error x̂− x = −0.019171
(Ok, because output is correct for a slightly perturbed input.)

✷

An algorithm is stable if small perturbations to the input lead to small
changes in the output. Using backward error analysis then the algorithm
is stable if the result it produces is the exact solution to a nearby problem. If
algorithm is stable the output is exact for a nearby problem but solution to
nearby problem is not necessarily close to the solution to the original problem
UNLESS problem is stable. Therefore, inaccuracy can result from applying
a stable algorithm to an ill-conditioned problem as well as from applying an
unstable algorithm to a well-conditioned problem.

✷

5 SOLUTION OF NONLINEAR EQUATIONS

Methods
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1. Two Point Methods

2. One Point Methods

We’ll also discuss Polynomial Root Finding later.

BASIC PROBLEM:

Find x such that f(x) = 0 f : R→ R ∩ C1 x ∈ R.

In most cases it is not possible to solve this problem analytically. Most
methods are iterative and require some initial guess(es). The most common
are:

Two-point Methods: require 2 guesses
One-point Methods: require 1 guess

Two-point Methods:

Consider bracketing methods. These are inspired by the above two theorems.

General Technique in bracketing: if f ∈ C[a, b] and f(a)f(b) ≤ 0 then by the
intermediate value theorem ∃ at least one 0 in [a, b]. Condition f(a)f(b) ≤ 0
means that f(a) and f(b) are opposite in sign. So choose a, b to be bracket
hopefully containing the root you want f(α1) = 0. Search and iterate making
the brackets smaller until you hit the root.

5.1 Bisection Method:

A bracketing technique. see Figure 13

Bisection Algorithm

1. is f(a)f(b) < 0?

c =
1

2
(a+ b)
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a b

a b

c

c

f(a)

f(b)

f(a)f(c) < 0

f(a)

f(b)f(c)f(b) < 0

second move

second move

f(c)

f(c)

Figure 13: Second move directions according to the bracketing rule for two
different cases.

2. is f(a)f(c) < 0?: % else f(c)f(b) < 0

repeat 



if (f(a)f(c)) < 0)
b = c
else a = c
else f(c) = 0

Remark: Unlikely to find f(c) ≡ 0. Due to roundoff . . . so we use
|f(c)| < |δ|, δ≪ 1.

3. Potential Round-off Problem

c0 =
a+ b

2

c1 =
c0 + b

2
=

1

4
(a+ 3b)

c2 =
1

2.4
(a+ 7b)
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a b

a b

Figure 14: In the first figure the slope is large that you might get overflows,
in the second, that you might get underflows.

c3 =
1

2 · 4 · 8(a + 15b)

One can see that the first term can become so small compared to the
second term which can then lead to errors, due to roundoff. In general,
always best to add small correction to a previous approximation. Could
otherwise lead to c 6∈ [a, b].

Implementation: use

c = a+
(b− c)

2

instead of

c =
a + b

2
.

4. We really only care about sign of f(a)f(b) therefore to avoid underflows
and overflows compute instead sgn(f(a))sgn(f(b)), see Figure 14

5. Implementation: use threee stopping criteria:

(1) maximum number of bisections (avoids runaway jobs)

(2) location error: |b− a| < ǫ

(3) accuracy of root: |f(c)| < δ

make code satisfy all three criteria.

Could you make a drawing of a function that will fail one of the above
criteria but not the other one?
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✷

Error Analysis Assume that we have the following brackets: [a0, b0], [a1, b1] · · ·.
Also, assume that a0 ≤ a1 ≤ a2 · · · ≤ b0, ai is a sequence that increases
and bounded by b0 from above. Also, b0 ≥ b1 ≥ b2 · · · ≥ a0, bi is a sequence
that decreases and bounded by a0 from below.

Then

bn+1 − an+1 =
1

2
(bn − an) n ≥ 0

b1 − a1 =
1

2
(b0 − a0)

b2 − a2 =
1

2
(b1 − a1) =

1

2

1

2
(b0 − a0)

...

bn − an = 2−n(b0 − a0)

Then limn→∞ bn − limn→∞ an = limn→∞ 2−n(b0 − a0) = 0 Note that r =
limn→∞ an = limn→∞ bn therefore 0 ≥ f(limn→∞ an)f(lima→∞ bn) = f(r)f(r).
Hence f(r) = 0.

✷

Suppose we are in a certain bracket n: [an, bn]. What’s the best estimate of

the location of the root? The midpoint is sensible: cn =
an + bn

2
, then

|r − cn| ≤
1

2
(bn − an) = 2−(n+1)(b0 − a0)

✷

Theorem: Bisection Method: If [a0, b0], [a1, a2] · · · [an, bn] · · · denote the inter-
vals in the bisection method, then

the lim
n→∞

an and lim
n→∞

bn exist, are equal and represent zero of f . If r =

limn→∞
1
2
(an + bn) then |r − cn| ≤ 2−(n+1)(b0 − a0)

✷
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Example Suppose [50, 63]. How many steps should be taken to compute a
root with relative accuracy of 1 part in 10−12?

|r − cn|
|r| ≤ 10−12.

We know that r ≥ 50 ∴
|r − cn|

x0

≤ 10−12

By theorem:

|r − cn| ≤ 2−(n+1)(b0 − a0) = 2−(n+1)(63− 50)

|r − cn|
50

≤ 2−(n+1)13

50
≤ 10−12.

Solving for the inequality, we have that n ≥ 37. ✷

5.2 Regula-Falsi Method (False-Position Method)

It seems that the simplest methods often converge the slowest. This certainly
seems to be the case here.

The bisection method does not use the actual values of f(x). It only uses
their sign. However, the values could be exploited. One way to use values of
f(x) is to bias the search according to value of f(x): use a weighted average.

Choose c as the intercept of the secant line through the points (a, f(a)) and
(b, f(b)).

Assume f(x) continuous such that f(a)f(b) < 0

y − f(b)

x− b
=

f(a)− f(b)

a− b
This gives the formula for the secant line

pick the intercept y = 0, then the next approximation is

x1 =
af(b)− bf(a)

f(b)− f(a)
.
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Figure 15: Regula-Falsi Algorithm.
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The algorithm is depicted in Figure 15.

x1 is the first approximation to x∗

As in the Bisection Method, if f(x1) 6= 0⇒ f(a)f(x1) < 0 or f(x1)f(b) < 0
and there must be a root x⋆ ∈ [x1, b]. Suppose f(x1)f(b) < 0, then

x2 =
x1f(b)− bf(x1)

f(b)− f(x1)
, etc.

This is the pseudo code for the Regula Falsi method:

User inputs: a,b, max, epsilon

Initialize: iteration = 0

xold = b //to start out

Inside a loop with condition that iteration <=max:

while(iteration <=max)

compute f(a)

compute f(b)

x = a - ((f(a)*(b-a)) / (f(b)-f(a))

increment iteration

Test:

if |x-xold| < epsilon*|x| then

output x

goto stop

else

output (iteration, a, b, x)

xold = x

compute f(x)

if f(a)*f(x) > 0 // here we are testing

// for a positive sign,

// not necessarily the value

a = x
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else

b = x

end

end

end

stop

A potential problem: what should be the stopping criteria (Recall that in
bisection we had intervals getting smaller)?

We could use

|xn − xn−1| < ε(2)

and

|f(xn)| < δ.(3)

however these can lead to some problems:

Suppose |xn−xn−1| =
1

n
, which is satisfied by (2) when n ≥ 1

ε
. The problem

will be that {xn} will actually diverge.

Suppose f(x) = (2−x)7, x∗ = 2 and xn = 2− 1
n
⇒ |f(xn)| < 10−2 ∀n > 1

whereas |x∗ − xn| < 10−2 only for n > 100

So the test will signal convergence prematurely!

Instead the stopping criteria should be

|xn − xn−1| < ε|xn|

and use a relative error as well for f(xn). ✷
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5.3 Newton Raphson Method (N-R Method)

Problem Statement’: Find x = p such that f(x) = 0

Suppose f ∈ C2[a, b]. Let x ∈ [a, b] be an approximation to p such that
f ′(x) 6= 0 and |x− p| is“small.” Then

f(x) = f(x) + (x− x)f ′(x) +
(x− x)2

2
f ′′(ξ(x)) +O(|x− x|3)(4)

where ξ(x) lies between x and x. Since f(p) = 0, with x = p, (4) gives

0 = f(x) + (p− x)f ′(x) +
(p− x)2

2
f ′′(ξ(p)).(5)

If |p− x| is small, then |p− x|2 smaller, and

0 ≈ f(x) + (p− x)f ′(x)

is a good approximation. Solving for p:

p ≈ x− f(x)

f ′(x)

The N-R method begins with an estimate p0 and generates a sequence {pn},

pn = pn−1 −
f(pn−1)

f ′(pn−1)
n ≥ 1 p0 ≡ initial guess

See Figure 16 for the algorithm.

Newton-Raphson Algorithm

inputs initial guess p0, tolerance TOL, maximum iterations

1. Set i = 1

2. While i ≤ N0 do Steps 3 - 6
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(p0,f(p0))
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(p1,f(p1))

p2

(p2,f(p2))

Figure 16: Newton Raphson Algorithm
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3. Set p = p0 − f(p0)/f
′(p0) % to compute pi

4. If |p− p0| < TOL then
OUTPUT p
STOP

5. Set i = i+ 1

6. Set p0 = p % update p0

7. Output (‘Method failed after N0 iterates’)
STOP

Pros: Faster than 2-point methods: the bisection and regula-falsi method are
linear, secant method (see 5.5) is superlinear. N-R Method has quadratic
convergence.

Cons: a) Need f ′(x) or a good approximation to it (in general an approxi-
mations will produce less than quadratic speed of convergence).

b) Not guaranteed to always converge.

Error Analysis Let the error en ≡ pn−p. For simplicity we assume no round-
off errors in this analysis.

Assume p is a simple zero and f ′ continuous. Then

en+1 = pn+1 − p = pn −
f(pn)

f ′(pn)
− p

= en −
f(pn)

f ′(pn)
=

enf
′(pn)− f(pn)

f ′(pn)
(6)

By Taylor’s Theorem:

0 = f(p) = f(pn − en) = f(pn)− enf
′(pn) +

1

2
e2nf

′′(ξn)
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where ξn is between pn and p. Rearranging terms we see that

enf
′(pn)− f(pn) =

1

2
f ′′(ξn)e

2
n(7)

Which we substitute into 6) to get

en+1 =
1

2

f ′′(ξn)

f ′(pn)
e2n ≈

1

2

f ′′(p)

f ′(p)
e2n = Ce2n(8)

Therefore, the algorithm has at least quadratic convergence rate.

Note that we haven’t established convergence itself. Just the rate. By (7),

proof is as follows: if en small and if
1

2

f ′′(ξn)

f ′(pn)
is not too large⇒ en+1 will be

smaller than en.

Define c(δ) = 1
2

max
|x−p|≤δ

|f ′′(x)|
/

min
|x−p|≤δ

|f ′(x)|, δ > 0

Select δ small enough so that the denominator is positive, and then if neces-
sary, decrease δ so that δc(δ) < 1. This is possible because as δ → 0, then

c(δ) converges to
1

2
|f ′′(p)|

/
|f ′(p)|, and δc(δ) converges to 0.

Having fixed δ, set ρ = δc(δ).

Suppose we start the N-R Method with p0 satisfying |p0 − p| ≤ δ. Then
|e0| ≤ δ and |ξ0 − p| ≤ δ then

1

2
|f ′′(ξ0)|

/
|f ′(p0)| ≤ c(δ)

by the definition of c(δ).

Taking (7) |p1−p| = |e1| ≤ e20c(δ) = |e0||e0|c(δ) ≤ |e0|δc(δ) = |e0|ρ < |e0| ≤ δ

∴ p1 lies within δ distance to p. Repeating,

|e1| ≤ ρ|e0|
|e2| ≤ ρ|e1| ≤ ρ2|e0|

|e3| ≤ ρ3|e0|
:

|en| ≤ ρn|e0|
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Since 0 ≤ ρ < 1 lim
n→∞

ρn = 0 ∴ lim
n→∞

en = 0

Theorem: (Newton) Let f ∈ C2[a, b]. If p ∈ [a, b] is a simple zero (such that
f(p) = 0) and f ′(p) 6= 0 ⇒ ∃ a neighborhood of p and a constant C such
that if the Newton method started in that neighborhood, successive guesses
become closer to p and satisfy

|pn+1 − p| ≤ C(pn − p)2 n ≥ 0

✷

In some situations Newton Method is guaranteed to converge from any arbi-
trary starting point:

Theorem 2: If f ∈ C2(R), is an increasing, convex function, and f(p) = 0
then p is unique and the Newton method will converge to it from any starting
point. ✷

Exercise Prove Theorem 2. Hints: Convex means f ′′(x) > 0 ∀x. Increasing
means: f ′(x) > 0. You may also use (8). ✷

Example Efficient Method of computing square root of number:

Let R > 0 and x =
√
R. then x2−R = 0. Then Newton Raphson formula

yields xn+1 =
1

2

(
xn +

R

xn

)
(credited to Heron, Greek Engineer circa 100

B.C. - 100 A.D).

✷

5.4 Steffensen Method

A variant of the N-R Method. Consider

pn+1 = pn − f(pn)
/
g(pn)

where g(x) =
[f(x+ f(x))− f(x)]

f(x)

This requires g ∈ C3[a, b]

for quadratic convergence
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So the value of this algoritm primarily lies in the fact that no f ′(x) is needed.

✷

5.5 Secant Method

Like the Newton method with a secant approximation to f ′(x). Newton’s
Method requires f ′(x)

Replace f ′(xn) ≈
f(xn)− f(xn−1)

xn − xn−1

since f ′(x) = lim
n→x

f(h)− f(x)

h− x

The tangent is replaced by secant:

∴ pn+1 = pn − f(pn)

[
pn − pn−1

f(pn)− f(pn−1)

]
n ≥ 1

So we need two starting values in this method.

Rate of Convergence:

en+1 = Cenen−1 ∼ A|en|(1+
√
5)/2

Since this is the golden mean
(1 +

√
5)

2
≈ 1.62 < 2 the convergence rate is

superlinear, i.e. better than linear, but not as good as quadratic convergence
rate.

✷

The algorithm for the Secant method is depicted in Figure 17.

Secant Method Algorithm

Find f(x) = 0 given p0, p1

input p0, p1 tolerance, N0.
output p, or failure message

1. Set i = 2
q0 = f(p0)
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Figure 17: Secant Method Algorithm

75



q1 = f(p1)

2. While i ≤ N0 do 3 - 6:

3. Set p = p1 − q1(p1 − p0)
/
(q1 − q0) % compute pi

4. if |p− p1| < TOL then
output p % done
Stop

5. i = i+ 1

6. Set p0 = p1 % update p0, q0, p1, q1
q0 = q1
p1 = p
q1 = f(p)

7. Output (‘Method failed after N0 iterates).
STOP

✷

5.6 Fixed Point Iteration

def: A fixed point p is the value p such that

g(p) = p.

Fixed Point problems and root-finding problems f(x) = 0 are equivalent: Let
g(p)− p = f(p)⇒ f(p) = 0. Hence, if a function has a fixed point g(p) = p
then f(p) = 0, i.e., f has a zero at p.

Three Problems:

1. Which functions will have a fixed point?
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2. How do we determine the fixed point?

3. Is the fixed point unique?

Example g(x) = x, 0 ≤ x ≤ 1 has a fixed point at each x ∈ [0, 1]. To see
this, just plot it.

Example g(x) = x − sin πx has 2 fixed points in [0, 1] x = 0, x = 1. Plot
this to see it.

✷

Theorem (Existence and Uniqueness): If g ∈ C[a, b] such that g(x) ∈ [a, b] ∀x ∈
[a, b] then g(x) has a fixed point in [a, b].

Suppose, in addition, that g′(x) exists on (a, b) and that a positive constant
k < 1 exists with

|g′(x)| ≤ k < 1 ∀x ∈ (a, b)

then the fixed point in [a, b] is unique.

Proof:

Existence: If g(a) = a or g(b) = b, then existence of fixed point is clear.
Suppose not, then it must be true that g(a) > a and g(b) < b. Define
h(x) = g(x)− x. Then h is continuous on [a, b] and

h(a) = g(a)− a > 0 h(b) = g(b)− b < 0

The Intermediate Value Theorem implies that there exists p ∈ (a, b) for which
h(p) = 0. Thus, g(p)− p = 0 implies p is fixed point of g.

Uniqueness: Suppose, in addition |g′(x)| ≤ k < 1 ∀x ∈ (a, b) and that p
and q are both fixed points in [a, b] with p 6= q. By the Mean Value Theorem
a number exists between p and q such that

g(p)− g(q)

p− q
= g′(ξ)

then |p − q| = |g(p) − g(q)| = |g′(ξ)|p − q|| ≤ k|p − q| < |p − q| which is a
contradiction.
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Figure 18: Fixed point iteration illustrated graphically

This contradiction comes from the statement p 6= q ∴ p = q and the fixed
point is unique. ✷

Fixed-Point Iteration Here we employ an iterative procedure to find the solu-
tion of g(p) = p. The questions are: (1) does the iterative procedure converge
to the exact answer? (2) under what conditions does it converge?, (3) at what
rate?

The iteration is rather straightforward: Pick a p0 and generate a sequence
{pn}∞n=0 such that pn = g(pn−1) for n ≥ 1. If the sequence converges to p and
g is continuous then by the theorem above:

p = lim
n→∞

pn = lim
n→∞

g(pn−1) = g( lim
n→∞

pn−1) = g(p)

The algorithm is depicted in Figure 18
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Fixed Point Algorithm

Input: p0, TOL, N0 (max number of iterations)
Output: p or message of failure

1. Set i = 1

2. While i ≤ N0

3. Set p = g(p0) % Compute pi

4. if |p− p0| < TOL then
output (p); % found
Stop

5. Set i = i+ 1

6. Set p0 = p Update p.

7. Output (Iterations exceeded. i > N0)
END

✷

Theorem: (Fixed Point Iteration) Let g ∈ C[a, b] and suppose g(x) ∈ [a, b] ∀x ∈
[a, b]. Suppose in addition that g′ is continuous on (a, b) with

|g′(x)| ≤ k < 1 ∀x ∈ (a, b).

If g′(p) 6= 0, then for any p0 in [a, b], the sequence

pn = g(pn−1), for n ≥ 1,
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converges only linearly to the unique fixed point in [a, b]

Proof: The Fixed Point Theorem says {pn}∞n=0 → p. Since g′ exists on (a, b)
we can apply the Mean Value Theorem to g to show that for any n

pn+1 − p = g(pn)− g(p) = g′(ξn)(pn − p)

where ξn lies between pn and p. Since {pn}∞n=0 → p, and {ξn}∞n=0 → p. Since
g′ is continuous on (a, b) we have

lim
n→∞

g′(ξn) = g′(p)

thus

lim
n→∞

pn+1 − p

pn − p
= lim

n→∞
g′(ξn) = g′(p) and

lim
n→∞

|pn+1 − p|
|pn − p| = |g′(p)|

therefore, the fixed point iteration converges linearly if g′(p) 6= 0.

✷

Remark: Under certain circumstances we can get higher-order convergence,
i.e. when g′(p) = 0. The following theorem addresses this situation:

Theorem: Suppose p is a solution of x = g(x). Assume as well that g′(p) = 0
and g′′ continuous and strictly bounded by M on an open interval I con-
taining p. Then ∃ δ > 0 such that p0 ∈ [p − δ, p + δ]. Then the sequence
pn = g(pn−1), n ≥ 1 will converge quadratically:

|pn+1 − p| < M

2
|pn − p|2

✷

Fixed Point Iteration: Let g ∈ C ⊆ [a, b] and suppose g(x) ∈ [a, b] ∀x ∈ [a, b].
Suppose in addition that g′ exists on (a, b) with k > 0 and constant such
that

|g′(x)| ≤ k < 1 ∀x ∈ (a, b).(9)

If p0 is any number in [a, b], then

pn = g(pn−1), n ≥ 1
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converges to unique fixed point in [a, b].

Proof: From Fixed Point Theorem, a unique fixed point exists in [a, b]. Since
g maps [a, b] into itself, the sequence {pn}∞n=0 is defined ∀n ≥ 0 and pn ∈
[a, b] ∀n.

Using (9) and the Mean Value Theorem

|pn − p| ≈ |g(pn−1)− g(p)| = |g′(ξ)||pn−1 − p| ≤ k|pn−1 − p|
where ξ ∈ (a, b).

By induction

|pn − p| ≤ k|pn−1 − p| ≤ k2|pn−2 − p| ≤ · · · kn|p0 − p|.(10)

Since k < 1
lim
n→∞

|pn − p| ≤ lim
n→∞

kn|p0 − p| = 0

and
{pn}∞n=0 → p.

✷

Corollary If g satisfies the hypothesis of the Fixed Point Iteration theorem,
bounds for the error involved in using pn to approximate p are given by

|p− pn| ≤ kn max{p0 − a, b− p0} (a)

and

|p− pn| ≤
kn

1− k
|p1 − p0| ∀n

≥ 1 (b)

Proof: (a) follows from (10):

|pn − p| ≤ kn|p0 − p| ≤ knmax{p0 − a, b− p0} since p ∈ [a, b].

For n ≥ 1

|pn+1 − pn| = |g(pn)− g(pn−1)| ≤ k|pn − pn−1| ≤ . . . kn|p1 − p0|.
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Therefore, for m > n ≥ 1,

|pm − pn| = |pm − pm−1 + pm−1 − pm−2 + pm−2 − · · ·+ pn

≤ |pm − pm−1|+ |pm−1 − pm−2|+ · · · |pn+1 − pn

≤ km−1|p1 − p0|+ km−2|p1 − p0|+ · · · kn|p1 − p0|
= kn(1 + k + k2 . . . km−n−1)|p1 − p0|.

Since lim
m→∞

pm = p then

|p− pn| = lim
m→∞

|pm − pn| ≤ kn|p1 − p0|
∞∑

i=0

ki

Since
∑∞

i=0 k
i = 1

1−k
then

|p− pn| ≤
kn

1− k
|p1 − p0|.

✷

Remark: The rate at which {pn} converges depends on k: the smaller the
value of k, the faster it will converge.

Example: Consider g(x) = (3x + 18)
1
3 for x ∈ [0,∞). This function is

illustrated in Figure 19. Get matlab code used in the example.

First we wish to ensure that the function maps [0,∞) into itself.

g([0,∞)) = [18
1
3 ,∞) ⊂ [0,∞)

Next we look at the derivative of g(x)

g′(x) =
1

3
(3x+ 18)

−2
3 × 3

=
1

(3x+ 18)
2
3

|g′(x)| = 1

(3x+ 18)
2
3

≤ 1

18
2
3

< 1 for x ∈ [0,∞)
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Figure 19: Plot of g(x)

This fulfills the requirements for a unique fixed point to exist in [0,∞). It
also ensures that if we start with any non-negative value of x we will converge
to the fixed point. The table below shows the first ten iterations for three
different values of x0. Figure 20a and Figure 20b illustrate the iteration
history and the logarithm of the error, for the case starting with x0 = 0.
Figure 21a and Figure 21b illustrate the iteration history and the logarithm
of the error, for a case starting with x0 = 100. Finally, Figure 22a and Figure
22b illustrate the iteration history and the logarithm of the error, for a case
starting with x0 = 10000.
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Figure 20: Iteration history and the logarithm of the error. Case starting
with x0 = 0. g(x) = (3x+ 18)

1
3 for x ∈ [0,∞)
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Figure 21: Iteration history and the logarithm of the error. Case starting
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x0 0 100 10000
x1 2.6207 6.8256 31.0785
x2 2.9573 3.3760 4.8093
x3 2.9952 3.0412 3.1889
x4 2.9995 3.0046 3.0208
x5 2.9999 3.0005 3.0023
x6 3.0000 3.0001 3.0002
x7 3.0000 3.0000 3.0000
x8 3.0000 3.0000 3.0000
x9 3.0000 3.0000 3.0000
x10 3.0000 3.0000 3.0000

The iterations for the three different starting points all appear to converge
to the point 3. The log error plots are straight lines and they all have the
same slope, indicating the same rate of convergence.

We can also prove analytically that 3 is the fixed point of g(x). A fixed point
of g(x) satisfies

x = (3x+ 18)
1
3 .

We can rearrange this to get x3−3x−18 = 0 which has one real root, x = 3.

✷

Example: Consider the function g(x;α) = x2−2x+1
α

for x ∈ [0, 2]. We will
start with the initial value x0 = 0.1 and consider what happens for various
values of α. Get matlab code used in the example.

Now lets see whether we can understand what is happening. First let us look
at the range of the function

Range(g(x)) = [0,
1

α
]

This shows why the iterations blow up for α less than 0.5. For α < 0.5 the
range is not within the domain of g(x) (i.e. [0, 2]) and so points may ’escape’.
However for any value of α greater than 1/2 the range is mapped to within
the domain.

Next we need to look at the derivative of g(x)

g′(x) =
2

α
(x− 1)
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The magnitude of the derivative is only less than 1 for all values of x if
α ≥ 2. Thus for any value of α greater than two the fixed point theorem
holds and we have guaranteed convergence. We know, however, that we still
get convergence to a fixed point for some values of α less than two. What is
happening in these cases?

If α < 2 the magnitude of the derivative will be less than one for (1− α
2
, 1+ α

2
).

As long as the fixed point lies within this interval the theorem tell us that
there will be a region around the fixed point where iterations will converge
to the fixed point. This is the case as long as α > 4

3
. As it turns out, we

may still start at any point within [0, 2] and we will eventually arrive at the
fixed point although convergence takes longer and longer the closer α is to
the critical point.

For values of α < 4
3
the fixed point still exists but it becomes unstable (i.e.

If you start close to the fixed point and iterate you will move away from it
rather than towards it).

If we plot g(x) and the line y = x on the same graph we can see that there is
only one fixed point within the interval [0, 2] for all values of α > 0.5. In fact
we can calculate the value of the fixed point analytically by solving g(x) = x.

x =
x2 − 2x+ 1

α
αx = x2 − 2x+ 1

0 = x2 − (2 + α)x+ 1

This is a simple quadratic equation with two solutions

x̂ =
2 + α±

√
α2 + 4α

2

For α > 0.5 only the smaller of the two solutions lies within the interval [0, 2]
and is the unique fixed point. ✷

5.6.1 Contraction Mapping

Let C ⊆ R and F : C → C F is contractive if ∃ λ < 1 such that

|F (x)− F (y)| ≤ λ|x− y| ∀ x, y in domain of F
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Figure 23: Contraction Mapping. The range of f(x) between x = a and
x = b is smaller in length than b− a.
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See Figure 23 for a simple contraction example

Contractive Mapping Theorem: Let C ⊆ R closed subset. If F : C → C is
contractive from C to C, then F has unique fixed point. Moreover, this fixed
point is the limit of every sequence xn+1F (xn) with x0 ∈ C.

✷

Remark In homework you will need to prove that when F : [a, b]→ R1, if F ′

is continuous and |F ′(x)| < 1 on [a, b] then F is a contraction map.

F ′(xn) = lim
xn+1→xn

F (xn+1)− F (xn)

xn+1 − xn

if |F ′(x)| < 1 for x ∈ [a, b] then

lim
xn+1→xn

|F (xn+1)− F (xn)| < lim
xn+1→xn

|xn+1 − xn|

considering this, can iterative map:

|F (xn+1)− F (xn)| < |xn+1 − xn| ∴ contractive.

F has a fixed point if F : [a, b] → [a, b] and it will be unique if |F ′(x)| < 1
for all x ∈ (a, b); so either [a, b] is the whole real line, or there is no guarantee
of a fixed point.

✷

Quick Summary on Results on Fixed Point Iteration:

In what follows, let I = [a, b].

• Theorem: If g ∈ C(I) and g ∈ I ∀x ∈ I then g has a fixed point in
I.

• Theorem: Suppose, in addition, that g′(x) exists on (a, b), and define
0 < k < 1 so that |g′(x)| ≤ k < 1 ∀x ∈ (a, b). Then fixed point is
unique.

• Theorem: Let g(I) ⊆ I ≡ [a, b] and |g′(x)| ≤ k < 1 ∀x ∈ I. For
x0 ∈ I, the sequence xn = g(xn−1), where n = 1, 2 · · ·, converges to the
fixed point s. Furthermore, the nth error en = xn − s satisfies

|en| ≤
kn

1− k
|x1 − x0|

90



Figure 24: (a) Simple Root, (b) Multiple Root.

Remark: This last result is a “nonlocal” convergence theorem because
it specifies a KNOWN interval I = [a, b] and gives convergence for any
x0 ∈ I. It is often the case that we don’t know the interval I, but we
hope that if we pick x0 sufficiently close to s, it would still converge:
that would be a “local convergence” result.

• Theorem: Let g′(x) be continuous in some open interval I containing
s, where s = g(s). If |g′(x)| < 1 then there exists a ε > 0 such that the
xn = g(xn−1) is convergent whenever |x0 − s| < ε.

• Corollary: Suppose g′(x) is continuous on I, and g(x) continuous on
I containing s and |g′(b)| > 1. Then there is a neighborhood of s in
which no initial guess (except x0 = s) will work.

✷

RemarkWhat happens in the Newton and Secant Methods if f ′(pn) and f(pn)
go simultaneously to 0? This is a situation where we have a NON-SIMPLE
root, or a root WITH MULTIPLICITY. See Figure 24 for a comparison
between a simple and a multiple root. In order to deal with non-simple roots
we need to use a variation of several techniques we’ve discussed before.

First, we define what it a simple and non-simple zero are: A solution p of
f(x) = 0 is zero of multiplicitym if f(x) can be written as f(x) = (x−p)mq(x)
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for x 6= p where lim
x→p

q(x) 6= 0. Here q(x) represents the portion of f(x) not

contributing to zero of f .

All algorithms presented thus far have assumed the existence of a simple
root. So, how do we identify whether there’s a simple root:

1) f ∈ C1[a, b] has a root simple in (a, b) ⇐⇒ f(p) = 0 but f ′(p) 6= 0.

2) f ∈ Cm[a, b] has a root of m multiplicity p ⇐⇒

0 = f(p) = f ′(p) = f ′′(p) · · ·f (m−1)(p) but fm(p) 6= 0.

✷

Method for handling multiple zeros:

let µ =
f(x)

f ′(x)

if p is m- root m ≥ 1⇒ f(x) ≡ (x− p)mq(x)

µ(x) =
(x− p)mq(x)

m(x− p)m−1q(x) + (x− p)mq′(x)
=

(x− p)q(x)

mq(x) + (x− p)q′(x)︸ ︷︷ ︸
has root p but multiplicity 1

Now, apply Fixed Point iteration to

g(x) = x− µ(x)

µ′(x)

g(x) = x− f(x)f ′(x)

[f ′(x)]2 − f(x)f ′′(x)
.

Note that this is the difference between 2 small numbers! COULD BE A
PROBLEM. So although we have a way to do the computation, we still have
to be careful.

✷

Remark Acceleration of Linear Methods: Is there a way to accelerate con-
vergence of any linear Method? Yes, use Aitken’s ∆2 Method (see Aitken
acceleration 13.1).
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5.7 Zeros of Polynomials

The problem is to find the zeros of a polynomial of the form

P (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 nth − degree polynomial.

Theorem: Fundamental Theorem of Algebra

If P is a polynomial of degree n ≥ 1, then P (x) = 0 has at least 1 (possibly
complex) root.

✷

Corollary: If P (x) is a polynomial of degree n ≥ 1, then there are a unique
set of constants x1, x2, · · ·xk, (possibly complex), and a unique set of positive

integers m1, m2, · · ·mk, such that
k∑

i=1

mi = n and

P (x) = an(x− x1)
m1(x− x2)

m2 · · · (x− xk)
mk

Proof If a polynomial P has a root x1, then it can be factored as P =
(x − x1) ∗ Q for some polynomial Q of degree n − 1. Q in turn has a root,
which can be factored . . .. ✷

Corollary Let P and Q be polynomials of degree at most n. If x1, x2 · · ·xk

with k > n, are distinct numbers with P (xi) = Q(xi) for i = 1, 2, . . . k then
P (x) = Q(x), ∀x.

Proof Consider the polynomial R = P −Q and its factorization.

✷

Suppose you want to use the Newton-Raphson method to locate approxi-
mately the zeros of P . It is necessary to evaluate both P and its derivative
at specified values. Since both P and P ′ are polynomials there’s an efficient
nesting procedure:

5.7.1 Horner’s Method

This method uses nesting, requiring n multiplications and n additions to
evaluate any nth degree polynomial.
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Theorem (Horner’s) : Let P (x) = anx
n+an−1x

n−1+ · · · a1x+a0 and bn = an.
Set bk = ak + bk+1x0 for k = n− 1, n− 2, · · · 1, 0, then b0 = P (x0). Moreover,
if

Q(x) = bnx
n−1 + bn−1x

n−2 · · · b2x+ b1

then, P (x) = (x− x0)Q(x) + b0

Proof: Direct Calculation

✷

Example

4x4 + 13x3 − x+ 8 at x0 = −3
here n = 4 bn = an = 4
Remember bk = ak + bk+1x0

Using this formula we can calculate the coefficients bi by induction:

b3 = a3 + b4x0 = 13 + 4(−3) = 1

b2 = a2 + b3x0 = 0 + 1(−3) = −3
b1 = a1 + b2x0 = −1 +−3(−3) = 8

b0 = P (x0) = a0 + b1x0 = 8 + 8(−3) = −16

This gives us the following polynomials:

P (x) = (x− x0)Q(x) + b0 = (x+ 3)Q(x)− 16

Q(x) = bnx
n−1 + bn−1x

n−2 + . . .+ b2x+ b1

= b4x
3 + b3x

2 + b2x+ b1 = 4x3 + x2 − 3x+ 8

P (x) = (x+ 3)(4x3 + x2 − 3x+ 8)− 16

✷

TABLE FORM:
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Coefficient of x4 x3 x2 x1 x0

x0 = −3 a4 = 4 a3 = 13 a2 = 0 a1 = −1 a0 = 8
b4x0 = −12 b3x0 = −3 b2x0 = 9 b1x0 = −24

b4 = 4 b3 = 1 b2 = −3 b1 = 8 b0 = −16

Horner’s also yields a derivative of P (x):

Since P (x) = (x− x0)Q(x) + b0

where Q(x) = bnx
n−1 + bn−1x

n−2 · · · b2x+ b1

differentiating,
P ′(x) = Q(x) + (x− x0)Q

′(x)

therefore P ′(x0) = Q(x0).

ALGORITHM:

To find P (x0) and P ′(x0):

input: degree n; coeff’s a0, a1 · · · an; x0

output: y = P (x0) ; z = P ′(x0)

Step 1 y = an % compute bnfor P
z = an % compute bn−1 for Q

Step 2 for j = n− 1, n− 2 · · · 1
y = x0y + aj % compute bj for P
z = x0z + y %compute bj−1 for Q

Step 3 Set y = x0y + a0 % compute b0 for P
Step 4 output (y, z)

END.

✷

Example Find an approximation to one of the zeros of

P (x) = 4x4 + 13x3 − x+ 8

using the Newton-Raphson (see 5.3) procedure and synthetic division. These
are used to evaluate P (xn) and P ′(xn) for each iterate xn. With x0 = −3 as
initial guess, we obtained previously P (−3) in previous example.
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a4 a3 a2 a1 a0
x0 = −3 4 13 0 −1 8

b4x0 := −12 b3x0 = −3 b2x0 = 9 b1x0 = −24

b4 = 4 b3 = 1 b2 = −3 b1 = 8 b0 = 16 = P (−3)

Q(x) = 4x3 + x2 − 3x+ 8 and P ′(−3) = Q(−3)
So P ′(−3) can be found by evaluating Q(−3):

x0 = −3 4 1 −3 8

b′4x0 = −12 b′3x0 = 33 b′2x0 = −90

b′4 = 4 b′3 = −11 b′2 = 30 b′1 = −82 = Q(−3) = P ′(−3)

Then, by Newton Raphson,

x1 = x0 −
P (x0)

P ′(x0)
= −3− 16

82
≈ −3.1951.

Repeatingthis procedure yields x2:

x1 = −3.1951 4 13 0 −1 8
−12.7805 −0.7013 2.2408 −3.9646

4 0.2195 −0.7013 1.2408 4.0354 = P (x1)
−12.7805 40.1339 −125.9921

4 −12.5610 39.4326 −124.7513 = Q(x1) = P ′(x1)

So P (−3.1951) ≈ 4.0354, P ′(−3.1951) ≈ −124.7513

x2 = −3.1951−
4.0354

−124.7513 ≈ −3.1628.

Keep repeating this procedure.

. The root is −3.16171, to 5 decimal places.
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✷

Note that Q depends on the approximation and will change from iterate to
iterate.

Also, if the N th-iterate xn, in the Newton-Raphson procedure is the N th

approximation of Q for P then

P (x) = (x− xn)Q(x) + b0 = (x− xn)Q(x) + P (xn) ≈ (x− xn)Q(x)

so x− xn is an approximate factor of P.

Let xn = x̂, be the approximate zero of P , and Q1 the approximate factored
polynomial. Then

P (x) ≈ (x− x̂1)Q1(x)

We can find a second approximate zero of P by applying Newton-Raphson
to Q1. If P is an nth degree polynomial with n real zeros, repeating the
procedure will eventually lead to (n − z) approximate zeros of P and an
approximate quadratic factor Qn−2(x). Qn−2(x) = 0 can be solved using the
quadratic formula to find the remaining 2 roots. This is called deflation, and
leads to

P (x) = (x− x̂1)(x−x̂2) · · · (x− x̂k)Qk(x).

The difficulty with deflation is that Newton-Raphson applied repetitively
compounds errors. The larger k, the worse x̂k+1, which is a root of Qk(x) = 0,
will approximate a root of P (x) = 0. One way to eliminate these errors is
to use the reduced equations to find x̂2, x̂3, · · · x̂k approximate zeros of P
and then use these in a Newton Raphson procedure on P (x) with these
approximations as initial guesses. Also, knowing the nature of P (x) and the
approximate location of a root, it is easy to exploit the sign of P (x) in a
neighborhood of x̂i’s to define a good search interval for each root.

Now, suppose the roots are complex. What can we do then? The algo-
rithm still makes sense with complex values, however, if you consider what
the operations in the algorithm are, you will see that real initial guesses,
with polynomials with real coefficients will never yield complex roots from
Newton-Raphson. Also, there is the problem of manipulating complex float-
ing point numbers on the computer. In MATLAB this is not a problem since
it takes care of complex vs. real automatically. In Fortran or C++ there is
support for complex arithmetic. In C, you need to explicitly code up the
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complex arithmetic. In any case, you can express P (x) = PR(x) + iPI(x)
and roots x = α+iβ and solve this problem as a vector equation with 2
components. However, you need to replace the standard Newton-Raphson
with something like Müller’s Method, which can handle complex roots quite
naturally.

5.7.2 Müller’s Method

Developed in (1956). Used to find zeros of arbitrary analytic functions (par-
ticularly useful in finding roots of polynomials.) It is a variation of the secant
method (see 5.5). The process is illustrated in Figure 26. It is also useful
when searching for complex roots of analytic functions. (Recall: A function
is analytic at a point x0 if the function has a convergent Taylor series at x0.
A function is analytic in a region if it is analytic at every point in the region.)

In the secant method we start with 2 initial guesses x0 and x1 The next
approximation x2 is the intersection with the x axis of the line (x0, f(x0))
and (x1, f(x1)). Then we continue with x1 and x2 etc. Müller’s method uses
3 initial guesses x0, x1, x2 and determines the intersection with the x axis of
a parabola, as shown in Figure 26. Note that this is done by finding the
root of an explicit quadratic equation. The case where the roots are not real
is handled as well, though the geometric interpretation is more complicated.
(This is where the analyticity of the function is important, it makes the value
of the function for a complex argument meaningful).

Consider P (x) = a(x− x2)
2 + b(x− x2) + c

make it pass through (x0, f(x01)), (x1, f(x1)), (x2, f(x2))

Determine a, b, c:

f(x0) = a(x0 − x2)
2 + b(x0 − x2) + c

f(x1) = a(x1 − x2)
2 + b(x1 − x2) + c

f(x2) = a · 02 + b · 0 + c

c = f(x2)

b =
(x0 − x2)

2[f(x1)− f(x2)]− (x1 − x2)
2[f(x0)− f(x2)]

(x0 − x2)(x1 − x2)(x0 − x1)
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x

y

f(x)

x_0 x_1 x_2

Figure 25: Finding zeros with the Secant Method. We look for the intersec-
tion of the secant and the x-axis. The approximate root is x2.

x

y

f(x)

x_1 x_2 x_3x_0

Figure 26: Finding zeros using Müller’s method. We locally fit a parabola
and look at the intersection of the parabola with the x-axis.
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a =
(x1 − x2)[f(x0)− f(x2)]− (x0 − x2)[f(x1)− f(x2)]

(x0 − x2)(x1 − x2)(x0 − x1)

To find x3, the zero of P , apply the quadratic formula to P . There will be
two roots. The root we are interested in is the one that is close to x2. To
avoid round-off errors due to subtraction of nearby equal numbers, use:

x3 − x2 =
−2c

b±
√
b2 − 4ac

2 possibilities.

use the sign that agrees with the discriminant, i.e. the one that gives largest
denominator, and a result closer to x3

x3 = x2 −
2c

b+ sgn(b)
√
b2 − 4ac

Once x3, is determined, let x0 = x1 x1 = x2 x2 = x3 and repeat

Algorithm: Müller find x such that f(x) = 0 with x0, x1, x2

input: x0, x1, x2, TOL, N0

output: approximate x or failure
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Step 1 Set h1 = x1 − x0

h2 = x2 − x1

δ1 = (f(x1)− f(x0))/h1

δ2 = (f(x2)− f(x1))/h2;
d = (δ2 − δ1)/(h2 + h1)
i = 2

Step 2 While i ≤ N0 do Steps 3 - 7

Step 3 b = δ2 + h2d

D =
√
b2 − 4f(x2)d % may be complex

Step 4 if |b−D| < |b+ d|
then set

E = b+D else set E = b−D

Step 5 h = −2f(x2)/E
p = x2 + h

Step 6 if |h| < TOL then
output p
STOP

Step 7 x0 = x1 d = (δ2 − δ1)/(h1 + h2)
x1 = x2 i = i+ 1
x2 = p Step 8 output (‘Failure’)

h1 = xix0 END.
h2 = x2 − x1

δ1 = (f(x1)− f(x0))/h1

δ2 = (f(x2)− f(x1))/h2

Consider the function f(x) = ex +1. Clearly this has no real roots. Suppose
that we start with three initial “guesses” x0 = 1 and x1 = 0 and x2 = −1,
Müllers method would then lead us to find the quadratic polynomial passing
through (1, e+1),(0, 2) and (−1, 1+1/e). That is P (x) = a(x+1)2+b(x+1)+c

c = f(x2) = 1 + 1/e ≈ 1.3679
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b =
(x0 − x2)

2[f(x1)− f(x2)]− (x1 − x2)
2[f(x0)− f(x2)]

(x0 − x2)(x1 − x2)(x0 − x1)

=
4(1− 1/e)− (e− 1/e)

2
≈ 0.0890

a =
(x1 − x2)[f(x0)− f(x2)]− (x0 − x2)[f(x1)− f(x2)]

(x0 − x2)(x1 − x2)(x0 − x1)

=
(e− 1/e)− 2(1− 1/e)

2
≈ 0.5431

x3 is found as the root of P (x) that is close to x2, that is

x3 − x2 = x3 + 1 =
−2c

b+
√
b2 − 4ac

≈ −0.0820 + 1.5849i

so x3 ≈ −1.0820 + 1.5849i we use the positive sign in front of the square
root in the denominator to match the sign of b in order to choose the value
of x3 − x2 with smallest absolute value. Of course, in this case since the
term under the square root is negative, the two roots have the same absolute
value, but, we choose this one even so, since that is the way the algorithm is
defined. However, this raises the issue of how to pick the sign of the square
root when b may not be real. The guiding principal is to always make the
choice that picks the root of the quadratic that is closest to our most recent
estimate. At the next iteration, we get

a ≈ 0.2157 + 0.1094i b ≈ 0.0343 + 0.5563i c ≈ 0.9952 + 0.3389i

the formula for x4 is x4−x3 = −2c/(b±
√
b2 − 4ac). The two possible values

of the denominator are approximately 0.3595−0.5040i and −0.2909+1.6167i
, the larger choice is the latter thus we use the negative sign in defining x4.
This sort of checking is exactly what is in the algorithm listed above. We
could avoid the comparison by rewriting:

x4 − x3 = −2cb∗/(|b|2 +
√
|b|4 − 4ac(b∗)2)

where b∗ is the complex conjugate of b, and the square root is always chosen
so the result has non-negative real part. In this example, if we continue, the
algorithm will converge to the root x = πi. Here is a table of the next few
values:
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n xn
0 1.0000
1 0.0000
2 -1.0000
3 -1.0820 + 1.5849i
4 -1.2735 + 2.8505i
5 -0.3814 + 3.7475i
6 0.1973 +3.1457i
7 -0.0168 + 3.1571i
8 0.0000 + 3.1421i
9 0.0000 + 3.1416i

6 Norms of Functions

L1 − norm ||f − q||1 =

∫ b

a

|f(x)− q(x)|w(x)dx

L2 − norm ||f − q||2 =

{∫ b

a

|f(x)− q(x)|2w(x)dx
} 1

2

L∞ − norm ||f − q||∞ = max
a≤x≤b

|f(x)− q(x)|

w(x) is a “weight” function, which provides some flexibility in measuring

closeness. In all cases consider w(x) continuous and non-negative on (a, b),

∫ b

a

w(x)dx

exists and

∫ b

a

w(x)dx > 0.

Remark: A sequence of functions {gk(x)}∞k=1 is said to converge to g(x) with
regards to a given norm || · || ⇐⇒

lim
k→∞
||gk − g|| = 0

✷

In scientific computing we obsess over quantifying things. The point of this
example is to show that there are many ways to quantify how close one
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function is from another one, and that thought should be placed on what is
the most useful way to quantify this closeness.

Example In this example we want to compare quantitatively a function to
another one. We might want to do this in order to quantify how well one of
these functions approximates the other one 4.

def: Let Z(x) ≡ 0 (zero function) x ∈ [a, b].

Consider x ∈ [a, b] a = 0, b = 3 in what follows.

We are going to propose a 1-parameter family of functions fk(x) as candidate
approximating functions to Z(x):

For any k > 0 let fk(x) be given by

fk(x)





k(k2x− 1) 1
k2
≤ x ≤ 2/k2

−k(k2x− 1) 2
k2
≤ x ≤ 3/k2

0 otherwise

here k ≥ 1. See Figure 27 for an illustration.

We obtain the following from these norms:

||Z − fk||1 =
1

k

||Z − fk||2 =
√
2√
3

||Z − fk||∞ = k.

So, the L1-norm drops as k increases, the L2-norm stays constant, the L∞-
norm grows as k increases. Which norm should we use?

Now, consider {||f − fk||}∞k=1 a sequence of real numbers and see

lim
k→∞
||Z − fk||1 = 0

lim
k→∞
||Z − fk||2 =

√
2/3

lim
k→∞
||Z − fk||∞ =∞

4I learned this example in my own class-taking; I can neither claim it is mine, nor can
I trace its origins.
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y=f_k

y= θ

Figure 27: Approximation of Z(x) with fk(x).

therefore the sequence {fk(x)}∞k=1 converges to Z(x) ONLY in the || · ||1,
norm.

In many practical cases we would probably accept fk(x) for large k as a
“good” approximation for f = Z(x) since it is only “bad” in a small neigh-
borhood of a single point. However, there are practical problems in which
even moderate errors in a small neighborhood are unacceptable.

✷

USEFUL FACTS ABOUT THESE 3 NORMS:

Let w(x) := 1, b ≥ a.

•

||f − q||1 =

∫ b

a

|f(x)− g(x)|w(x)dx ≤ max
a≤x≤b

|f(x)− g(x)|
∫ a

b

w(x)dx

= ||f − q||a
(∫ b

a

w(x)dx

)
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or || · ||1 ≤ || · ||∞
∫ b

a

w(x)dx

︸ ︷︷ ︸
constant

•

||f − q||2 ≤ ||f − q||∞
(∫ b

a

wdx

) 1
2

or || · ||2 ≤ || · ||∞
(∫ b

a

w(x)dx

) 1
2

• As a consequence, if || · ||∞ small then both || · ||1 and || · ||2 are smaller.
Thus || · ||∞ is stronger than the other 2 norms. Usually, we strive for
this in our work.

(N.B. Advanced calculus students recognize || · ||∞-norm is equivalent to
uniform convergence.) ✷

7 INTERPOLATION

7.1 Preliminaries

Problem: suppose we are given n+ 1 pairs (x, y)

x x0 x1 · · · xn

y y0 y1 · · · yn

n+ 1 values

and we want to find a polynomial p of lowest degree for which

p(xi) = yi 0 ≤ i ≤ n.

Here, p is then interpolating polynomial of the data.

Theorem I: If x0, x1 · · ·xn are distinct real numbers then, for arbitrary values
y0, y1 · · · yn there exists a unique polynomial pn of degree at most n such that

pn(xi) = yi 0 ≤ i ≤ n.
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Figure 28: Illustration of Weierstrass’ Theorem.

where pn(x) = a0 + a1x
1 + · · ·anxn n ≥ 0

✷ Why interpolate
with polynomials? They approximate continuous functions uniformly. That
is, given any function, defined and continuous on closed interval, there exists
a polynomial that is as close to the given function as desired in the infinity
norm (the L∞-norm).

Weierstrass Approximation Theorem: If f is defined and continuous on [a, b]
and ε > 0 is given, ⇒ ∃ polynomials pε, defined on [a, b] with the property

|f(x)− pε| < ε ∀x ∈ [a, b]

The situation is shown in Figure 28

✷

Remark: g(x) = f(a) + f ′(a)(x − a) + · · · + f(k)

k!
(x − a)k is a kth degree

polynomial that approximates f(x) for x near a. If f (k+1)(x) is continuous
then the error at x is given by

f (k+1)(ξ)

(k + 1)!
(x− a)k+1 ξ between x and a.
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✷

Example Suppose g(x) approximates f(x) and we wish to find a numerical
approximation for

∫ b

a

f(x)dx orf ′(α) for some x = α.

Then we would use ∫ b

a

q(x)dx or q′(α).

However it may be that while
∫ b

a

q(x)dx ≈
∫ b

a

f(x)dx

it may not be true tat q′(α) ∼ f ′(x) and vice versa.

Thus, knowledge of how these approximations are subsequently going to be
used determines the manner in which f(x) should be approximated by some
simpler function.

Remark: We will be primarily concerned with real, continuous functions over
some closed interval [a, b]. For simplicity, we are assuming that f(x) is real
amd f(x) ∈ C[a, b].

So how close are f(x) and g(x)? We see that f(x)− g(x) is “small” in some
sense. But how do we measure closeness? We develop some sort of measure
of size for functions in C[a, b]:

Theorem Set f(x) ∈ C[a, b] and let n > 0 be an integer. If || · || is any one of
the norms L1, L2, or Linfty (discussed previously) then there exists a unique
polynomial p∗(x) of degree n or less such that ||f − p∗(x)|| ≤ ||f − p|| for all
p(x) ∈ pn(x)

✷

Remark This theorem tells us that there exists a unique best nth-degree poly-
nomial approximation to f(x) in the Lp norm (p = 1, 2,∞). The preceeding
theorem might seem completely obvious. You can have sets where there is
no minimal element. In the theorem, if we omit the condition on the degree
of the polynomial, i.e. on n, and consider all polynomials, then there is no
best polynomial approximant.
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7.2 Polynomial Interpolation

Again, the problem is to interpolate f(x) by p(x) ∈ Pn in C[a, b]

Def Pn ≡ set of all polynomials of degree n or less. For example,

P3 = {ax3 + bx2 + cx+ d|a, b, c, d, real}.
Let x0, x1, . . . , xn be n + 1 distinct points on interval [a, b]. Then p(x) ∈ Pn

is said to interpolate f(x) at each of these points if

p(xj) = f(xj) 0 ≤ j ≤ n.

Theorem (Existence and Uniqueness)

Let {xj}nj=0 be (n + 1) distinct points in [a, b]. Let{yj}nj=0 be any set of
real numbers, then there exists a unique p(x) ∈ Pn such that p(xj) = yj for
j ∈ [0, n].

Proof: (Existence) For each j, 0 ≤ j ≤ n, let ℓj(x) be the nth degree polyno-
mial defined by

ℓj(x) ≡
(x− x0)(x− x1) · · · (x− xj−1)(x− xj+1) · · · (x− xn)

(xj − x0)(xj − xi) · · · (xj − xj−1)(xj − xj+1) · · · (xj − xn)

≡
n∏

i=0
i6=j

(x− xi)

(xj − xi)

These are called Cardinal Functions.

Def The Kronecker Delta Function δij is defined as

δij =

{
1 i = j
0 i 6= j

Remark ℓi(xj) = δij

Since the sum of the nth degree polynomials is again a polynomial of at most
nth degree, then let

p(x) ≡
n∑

j=0

yjℓj(x) “Lagrange Form of the interpolating polynomials”
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Figure 29: Illustration of ℓj(x), for x ∈ [−1, 1], for (a) n even, (b) n odd.

For 0 ≤ i ≤ n

p(xi) = y0ℓ0(xi) + y1ℓ1(xi) + · · · ynℓn(xi) = yiℓi(xi) = yi

A sketch of ℓj(x) when n is even and n odd appears in Figure 29, for xi

equidistant.

If f(x) is a function such that f(xi) = yi 0 ≤ i ≤ n, then there is an
interpolating polynomial of the form

p(x) =
n∑

j=0

f(xj)lj(x)

that belongs to Pn.

(Uniqueness): assume there are two different polynomials p(x) ∈ Pn, q(x) ∈
Pn such that p(xj) = q(xj) = yi for 0 ≤ j ≤ n. If r(x) = p(x) − q(x) then
r(x) ∈ Pn and r(xj) = p(xj)− q(xj) = 0 for 0 ≤ j ≤ n. By the Fundamental
Theorem of Algebra r(x) ≡ 0, so p = q which is a contradiction.

✷

The following proof is presented because it introduces the “Method of unde-
termined coefficients”. The method’s name applies to a number of situations
in which a number of unknown constants need to be determined, say M
of them. This is done by using the context of the problem to generate M
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equations which can uniquely determine the constants. It will show up in
integration problems (see 9), and the ODE section (see the ODE) section,
etc.

Proof 2: Let p(x) = a0 + a1x + · · · anxn, where aj’s are to be determined.
Consider the (n+ 1) equations

p(xj) = a0 + a1xj + a2x
2
j + · · ·anxn

j 0 ≤ j ≤ n(11)

In matrix form



1 x0 x2
0 · · · xn

0

1 x1 x2
1 · · · xn

1

1 : :
: : :
1 xn x2

n xn
n







a0
a1
a2
:
an



=




y0
y1
y2
:
yn




(12)

or V a = y The matrix V is called a “Vandermonde” Matrix and it is non-
singular if the x0, x1 · · ·xn are distinct: V is nonsingular if and only if 0 is
the only solution of V a = 0 (or determinant of V 6= 0).

So if a is any solution of V a = 0 then p(x) = a0 + a1x+ · · ·+ anx
n is an nth

degree polynomial with p(xj) = 0, j = 0, 1 · · · , n. Since the only nth degree
polynomial with (n + 1) zeros is the zero polynomial, it must be that a = 0
therefore V is non-singular. Thus (11) must have a unique solution and the
polynomial p(x) is found by solving (12), and is the unique interpolating
polynomial in Pn.

Remarks

(1) if f(x) ∈ Pn then f(x) = p(x) ∀x by uniqueness property.

(2) The solution of the Vandermonde matrix problem, (12), may yield an =
0 (other coefficients may also be zero), so p(x) may be a polynomial of
degree strictly less than n.

(3) if m > n there are an infinite number polynomials q(x) ∈ Pn which
satisfy q(xj) = yj 0 ≤ j ≤ n.

111



Example Suppose we want a second degree polynomial p(x) such that

x 0 1 2

p −1 2 7.

Writing the required polynomials explicitly:

ℓ0(x) =
(x− 1)(x− 2)

2
ℓ1(x) = −x(x− 2) ℓ2(x) =

x(x− 1)

2

Therefore p(x) = −ℓ0(x) + 2ℓ(x) + 7ℓ2(x) = x2 + 2x− 1

Using the Method of Undetermined coefficients: since x0 = 0, x1 = 1, x2 = 2:
Let

p(xj) = a0 + a1x+ a2x
2

p(0) = a0 = −1
p(1) = a0 + a1 + a2 = 2

p(2) = a0 + 2a1 + 4a2 = 7.



1 0 0
1 1 1
1 2 4






a0
a1
a2


 =



−1
2
7




Solving gives p(x) = x2 + 2x− 1

✷

Remark Often the yj’s are determined by some function f(x) so we have
p(xj) = f(xj), 0 ≤ j ≤ n.

Example Use nodes x0 = 2, x1 = 2.5, x2 = 4 to find the 2nd degree interpo-
lating polynomial for f(x) = 1/x.

ℓ0(x) =
(x− 2.5)(x− 4)

(2− 2.5)(2− 4)
= (x− 6.5)x+ 10

ℓ1(x) =
(x− 2)(x− 4)

(2.5− 2)(2.5− 4)
=

(−4x+ 24)x− 32

3

ℓ2(x) =
(x− 2)(x− 2.5)

(4− 2)(4− 2.5)
=

(x− 4.5)x+ 5

3
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Figure 30: Example of a function f(x) = 1/x and its 2nd degree interpolation
p(x) = (0.05x− 0.425)x+ 1.15.

Since f(2) = 0.5, f(2.5) = 0.4, f(4) = 0.25 then p(x) =

2∑

j=0

f(xj)ℓj(x) =

0.05x2 − 0.425x + 1.15 The comparison between the interpolation and the
function appear in Figure 30

Theorem: If x0, x1, · · ·xn are distinct numbers and f ∈ Cn+1[a, b] then for
each x ∈ [a, b] and a number ξ(x) in (a, b) exists with

f(x) = p(x) +
f (n+1)(ξ(x))

(n+ 1)!
(x− x0)(x− x1) · · · (x− xn)

where p(x) =
n∑

j=0

f(xj)ℓj(x)

This error formula is important because the ℓj(x) are used extensively for
deriving numerical differentiation and integration methods. Error bounds for
these are obtained from the Lagrange error formula.

✷
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The Error in Polynomial Interpolation

Theorem Let f ∈ Cn+1[a, b] and p be the polynomial of at most degree n
that interpolates f at n + 1 points x0, x1 · · ·xn ∈ [a, b]. For each x ∈ [a, b]
there corresponds a point ξ ∈ (a, b) such that

f(x)− p(x) =
1

(n+ 1)!
f (n+1)(ξ(x))

n∏

i=0

(x− xi),(13)

for some ξ(x) in [a, b].

Proof: Let R ≡ f − p(x). Since (13) is trivially satisfied at x0, x1, ...xn, we
need only to focuse on the case where x is not one of these locations.

Let Q ≡∏n
i=0(x−xi) and keeping x fixed, consider g : [a, b]→ R, the whole

real line, with

g(z) = f(z)− p(z)−Q(z)
f(x)− p(x)

Q(x)

with z ∈ [a, b]. By assumption of f , the function Q is n + 1-times contin-
uously differentiable, and by construction, has n + 1 zeros, at the locations
x0, x1, .... Then, by Rolle’s theorem the derivative Q′ must have at least n
zeros. Repeating the argument, by induction we deduce that the derivative
Q(n) has at least one zero in [a, b], which we denote ξ. For this zero we have
that

0 = f (n+1)(ξ)− (n + 1)!
R

Q
,

and from this we obtain (13).

✷

Example: We wish to approximate the sin(x) function on the interval
[−π, π] interpolating at the points x0 = −2π

3
, x1 = −π

3
, x2 = π

3
and x3 = 2π

3
.

Note that the points are unevenly spaced, this is perfectly all right. We know
that

sin(x0) = sin(x1) =
−
√
3

2

and

sin(x2) = sin(x3) =

√
3

2
.
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The Cardinal functions are as follows

l0(x) =
(x+ π

3
)(x− π

3
)(x− 2π

3
)

(x0 +
π
3
)(x0 − π

3
)(x0 − 2π

3
)

=
−9(x+ π

3
)(x− π

3
)(x− 2π

3
)

4π3

l1(x) =
(x+ 2π

3
)(x− π

3
)(x− 2π

3
)

(x1 +
2π
3
)(x1 − π

3
)(x1 − 2π

3
)

=
9(x+ 2π

3
)(x− π

3
)(x− 2π

3
)

2π3

l2(x) =
(x+ 2π

3
)(x+ π

3
)(x− 2π

3
)

(x2 +
2π
3
)(x2 +

π
3
)(x2 − 2π

3
)

=
−9(x+ 2π

3
)(x+ π

3
)(x− 2π

3
)

2π3

l3(x) =
(x+ 2π

3
)(x+ π

3
)(x− π

3
)

(x3 +
2π
3
)(x3 +

π
3
)(x3 − π

3
)

=
9(x+ 2π

3
)(x+ π

3
)(x− π

3
)

4π3

So the interpolating function, p(x) is equal to

p(x) =
−
√
3

2
l0(x)−

√
3

2
l1(x) +

√
3

2
l2(x) +

√
3

2
l3(x)

=
9
√
3

8π3

(
(x+

π

3
)(x− π

3
)(x− 2π

3
)− 2(x+

2π

3
)(x− π

3
)(x− 2π

3
)

−2(x+
2π

3
)(x+

π

3
)(x− 2π

3
) + (x+

2π

3
)(x+

π

3
)(x− π

3
)

)

Figure 31 shows the interpolating function as well as sin(x) the function
which we are approximating. Equation 13 tells us that the error for this
function is equal to

f(x)− p(x) =
1

4!
f (4)(ξ(x))

3∏

i=0

(x− xi)

=
1

24
sin(ξ(x))

3∏

i=0

(x− xi)

115



−3 −2 −1 0 1 2 3

−1

−0.5

0

0.5

1

sin(x) and its polynomial approximation, p(x)

x

Figure 31: Plot of function sin(x) (solid line) and its interpolating polynomial
p(x) (dashed line) for the points x0 = −2π

3
, x1 = −π

3
, x2 = π

3
and x3 = 2π

3
.

The dots show the interpolation points of the polynomial approximation.
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Error |sin(x)−p(x)| and the error estimate
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|

Figure 32: Plot of function the error |sin(x)− p(x)| (solid line) and also
the estimate for the error, 1

24
|
∏n

i=0(x− xi)| (dashed line). Note that the
only points where the estimate of the error agrees with the error is at the
interpolation points where we know it is zero.

where ξ(x) ∈ [−2π
3
,
2π

3
].

The maximum absolute value of the function sin(x) is 1 so we know that the
absolute error will less than 1

24
|
∏n

i=0(x− xi)|. Figure 32 shows the actual
error of the interpolation and this approximation. As you can see the error
is usually considerably smaller than this estimate.

We end with an algorithm called “Neville’s Recursive Algorithm” for the
generation of the polynomials:

Enter numbers (x0,x1, x2,.....xn)

evaluate f(x0), f(x1), f(x2),...f(xn) as the first colum S(0,0) S(1,0)

S(2,0)....S(n,0) of S.

Output table S with p(x) = S(n,n)
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for i = 1, 2,...n

for j = 1, 2, ....,i

S(i,j) =

[(x - x(i-j)) S(i,j-1) - (x - xi)S(i-1,j-1)]/[xi - x(i - j)]

end

end

Output (S);

stop

Here is a matlab code that implements this. Note that this code gener-
ates the function value corresponding to the Lagrange polynomial.

7.3 Chebyshev Polynomials

Chebyshev Polynomials are orthogonal polynomials with respect to a weight
over the interval -1 to 1 and obey a recursion relation. We can use them in
the following way: there’s a term in (13) that can be optimized thus reducing
the error.

Chebyshev polynomials obey the relations
{

T0(x) = 1 T1(x) = x
Tn+1(x) = 2xTn(x)− T(n−1)(x) n ≥ 1

The first four Chebychev polynomials appear in Figure 33

Here are first six polynomials:

T0(x) = 1

T1(x) = x

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x

T4(x) = 8x4 − 8x2 + 1

T5(x) = 16x5 − 20x3 + 5x

✷
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Figure 33: Illustration of T0, T1, T2, and T3.

Theorem: For x ∈ [−1, 1], the Chebyshev polynomials can be expressed as

Tn = cos(n cos−1(x)) n ≥ 0

and obey the following Properties:

1. |Tn(x)| ≤ 1 [−1,−1]

2. Tn(1) = 1

3. Tn(−1) = T2n(0) = (−1)n

4. Tn(cos(θ)) = 0, θ = (2k−1)π
2n

, k = 1, 2, ..., n

5. Tn(cos(θ)) = (−1)k, θ = kπ
n
, k = 0, 1, 2..., n

6. T2n+1(0) = 0

7. There are n roots and these are distinct.

8. Polynomial
Tn(x)

2n−1
has leading coefficient of 1 i.e. it’s a “monic polyno-

mial” and

max
−1≤x≤1

∣∣∣∣
1

2n−1
Tn(x)

∣∣∣∣ =
1

2n−1
(14)
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✷

Translating the Interval

The polynomials, although defined on the interval [−1, 1], can be used to
interpolate data and approximate functions on arbitrary finite intervals: The
domain of f(x), say, and p(x), say, from [a, b] → [−1, 1]. More generally,
suppose we want to compute on [c, d] but need to translate to [a, b] if t ∈ [c, d]
we can perform a straight line transformation into x ∈ [a, b]

x =

(
b− a

d− c

)
t +

(
ad− bc

d− c

)

✷

Supposing we are interpolating a sufficiently smooth function f(x) (scaled
to the interval [−1, 1]). Suppose that the function then defines the data
points to interpolate on −1 < x0 < x1... < xn < 1. If we used Lagrange
polynomials, we obtain the sup-norm error

||f(x)− p(x)||∞ ≤
1

(n+ 1)
max
|x|≤1

∣∣∣∣∣f
(n+1)(ξ(x))|max

|x|≤1
|

n∏

i=0

(x− xi)

∣∣∣∣∣ .(15)

We now ask whether this error can be minimized. The only place there is
room for improvement is in the choice of the points xi. That is, we could
choose xi such that

max
|x|≤1
|

n∏

i=0

(x− xi)| is minimized,

where

n∏

i=0

(x− xi) is an (n+ 1)th order polynomial.

This is in fact possible, as we shall see.

Let xi be the zeros of the 1
2n
Tn+1(x) polynomial.

xi = cos

(
(2j + 1

2n
π

)
0 ≤ j ≤ n.
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Note, by the way that

xj = cos
jπ

n+ 1
, j = 0, 1, 2, . . . , n+ 1

gives the extremas.

Anyway, (15) becomes

||f(x)− p(x)||∞ ≤
1

(n+ 1)!

1

2n
max

∣∣f (n+1)(ξ(x))
∣∣ .

Statement (14) can be proven as follows: Assume there exists a monic poly-

nomial V (x) ∈ Pn+1 and ||V ||∞ < ||
n∏

i=0

(x− xi)||∞.

If i is even, then V

(
cos(

iπ

n + 1
)

)
<

n∏

i=0

(x − cos(
iπ

n+ 1
)) =

1

2n
for 0 ≤ i ≤

n+ 1. Or else, ||V ||∞ > ||Π(x− xi)||∞.

If i is odd then V
(
cos iπ

n+1

)
>

n∏

i=0

(
x− cos(

iπ

n+ 1
)

)
= − 1

2n
, or again,

||V ||∞ ≥ ||Π(x−cos
(

iπ
n+1

)
)||∞. Thus V (x0) < W (x0), V (x1) > W (x1), V (x2) <

W (x2), V (x3) > W (x3), etc. Where W = Π
(
x− cos iπ

n+1

)
.

Let H(x) ≡ V (x)−W (x), which has a zero in each interval (xi, xi+1) 0 ≤ i ≤
n. Moreover H(x) ∈ Pn and is monic. Thus, H(x) ∈ Pn has at least (n+ 1)
zeros, but H(x) has at most n zeros, therefore we conclude that such V (x)
does not exist.

✷

Note: One can also prove that

max
|x|≤1

∣∣∣∣
1

2n
Tn+1(x)

∣∣∣∣ =
1

2n
≤ max

|x|≤1
|Q(x)|

where Q(x) is any monic polynomial of degree n + 1 with n + 1 roots in
−1 ≤ x ≤ 1.
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✷

This error formula is important because ℓj(x) are used extensively in deriving
numerical differentiation and integration schemes and the same arguments
are used there.

✷

7.4 Newton’s Divided Differences

Expressing a polynomial as

p(x) = y0l0(x) + y1l1(x) . . .+ ynln(x)

is cumbersome and somewhat inefficient. A more convenient structure is

p(x) = a0 + a1(x− x0) + a2(x− x0)(x− x1) + a3(x− x0)(x− x1)(x− x2) +

· · · an(x− x0)(x− x1) · · · (x− xn−1),(16)

which is known as the Newton form. Here the ai, i = 1..n are constants.

As before

p(x0) = f(x0), p(x1) = f(x1) . . . , p(xn) = f(xn).(17)

The a’s in (16) are found using (17): the first two,

p(x0) = a0 = f(x0)

p(x1) = f(x0) + a1(x1 − x0) = f(x1)

Therefore

a1 =
f(x1)− f(x0)

x1 − x0

.

Let
f [xi] ≡ f(xi).

We define the first divided difference to be

f [xi, xi+1] ≡
f [xi+1]− f [xi]

xi+1 − xi
.
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After k − 1 divided differences we obtain

f [xi, xi+1, xi+2 · · ·xi+k−1] and f [xi+1, xi+2, · · ·xi+k−1, xi+k].

Hence, the kth divided difference satisfies

f [xi, xi+1, xi+2 . . . xi+k−1, xi+k] =
f [xi+1, xi+2 . . . xi+k]− f [xi, xi+1, · · ·xi+k−1]

xi+k − xi

and the ak = f [x0, x1, x2 · · ·xk].

For example

f [x2, x3] =
f [x3]− f [x2]

x3 − x2

f [x3, x4, x5] =
f [x4, x5]− f [x3, x4]

x5 − x3

.

Hence, we can get

a1 = f [x0, x1]

a2 = f [x0, x1, x2]

with a little algebra, and so on.

With this notation we can write down (16) as

p(x) = f [x0] +

n∑

k=1

f [x0, x1 · · ·xk](x− x0) · · · (x− xk−1).

In the algorithm that we present below, we use the notation

Fi,1 = f [xi, xi+1].

We define

Fi,j ≡
Fi,j−1 − Fi−1,j−1

xi − xi−j
.

Note that Fi,i = f [x0, x1 . . . xi].

Algorithm: input x0, x1 · · ·xn distinct, f(x0), f(x1) · · · f(xn)
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output F0,0, F1,1, . . . , Fn,n where

p(x) =
n∑

i=0

Fi,iΠ
i−1
j=0(x− xj)

note f(x0) ≡ F0,0; f(xi) = F1,0; f(x2) = F2,0 · · · f(xn) = Fn,0

Step 1 for i = 1, 2 . . . n
for j = 1, 2 . . . i

Fi,j =
Fi,j−1 − Fi−1,j−1

xi − xi−j

Step 2 Output (F0,0;F1,1 . . . Fn,n)
End

1st 2nd 3rd
x f(x) div diff div diff div diff

x0 f [x0]

f [x0, x1] =
f [x1]−f [x0]

x1−x0

x1 f [x1] f [x0, x1, x2] =
f [x1,x2]−f [x0,x1]

x2−x0

f [x2, x1] =
f [x2]−f [x1]

x2−x1
f [x0, x1, x2, x3] =

f [x1,x2,x3]−f [x0,x1

x3−x0
...

...
... f [x1, x2, x3] =

f [x2,x3]−f [x1,x2]
x3−x1

f [x4]
... f [x4, x5] =

f(x5]−f [x4]
x5−x4

x5 f [x5]
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f(x) = x6 − 2x5 − 4x4 + x3 + x− 20
x f(x)
−3 841
−2 34
−1 −23
0 −20
1 −23
2 −74
3 −71
4 1072

8 points thus 8 divided difference levels:

0 DD 1 DD 2 DD · · · · · · · · · · · · 7 DD
x f [x] f [x, x] f [x, x, x] · · · · · · · · · · · · f [x, x, x, x, x, x, x, x]

−3 841
−807

−2 34 375
−57 −115

−1 −23 30 26
3 −11 −5

0 −20 −3 1 1
−3 −7 1 0

1 −23 −24 6 1
−51 17 7

2 −74 27 41
3 181

3 −71 570
1143

4 1072

✷
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7.4.1 Interpolation at Equally-Spaced Points

Things simplify considerably when we use Newton’s divided differences in
the interpolation of a function: Assume that

a = x0 < x1 < . . . < xn = b

xi = x0 + ih h =
b− a

n
0 ≤ i ≤ n.

Recall that

f [xi, xi+1] =
f(xi+1)− f(xi)

h

f [xi, xi+1, xi+2] =
f(xi+2)− 2f(xi+1) + f(xi)

2h2

We define the forward difference operator ∆. When applied to f(x),

∆f = f(x+ h)− f(x).

Hence,
∆k+1f(x) = ∆(∆kf) k = 0, 1, 2 . . .

where zeroth power of an operator is the identity operator.

✷

example

∆2f = ∆(∆f) = ∆(f(x+ h)− f(x))

= (f(x+ 2h)− f(x+ h))− (f(x+ h)− f(x))

= f(x+ 2h)− 2f(x+ h) + f(x)

thus

∆kf =

k∑

i=0

(
k

i

)
(−1)if(x+ (k − i)h)
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where
(
k

i

)
=

k!

i!(k − i)!(
k

0

)
=

(
k

k

)
= 1.

Recall

p(x) = f(x0)+f [x0, x1](x−x0)+· · ·f [x0, x1, · · · , xn](x−x0)(x−x1) · · · (x−xn−1)

change of variable

x = x0 + ρh ρ is a number

then

[x0, x1 · · ·xj ](x− x0)(x− x1) · · · (x− xj−1) =

∆jf(x0)

j!
ρ(ρ− 1)(ρ− 2) · · · (ρ− (j − 1))︸ ︷︷ ︸

polynomial of degree j
in the variable ρ

.

Note that (
r

j

)
=

r(r − 1)(r − 2) · · · (r − (j − 1))

j!
.

So, for j ≥ 1
(
r

0

)
= 1

(
r

1

)
= α

(
r

2

)
=

r(r − 1)

2

(
r

3

)
=

r(r − 1)(r − 2)

6
,

etc.

So we can write

p(x) = p(x0 + ρh) = f(x0) + ∆f(x0)

(
ρ

1

)
+∆2f(x0)

(
ρ

2

)
· · ·∆nf(x0)

(
ρ

h

)

Hence,

p(x0 + ρh) =

n∑

i=0

∆if(x0)

(
ρ

i

)
.
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✷

Newton’s forward Formula: appears tabulated in old books on functions and
series and books dedicated on divided differences:

x f(x) ∆f ∆2f · · · ∆nf

x0 f(x0)
∆f(x0)

x1 f(x1) ∆2f(x0)
∆(x1)

x2 f(x2) ∆2f(x4)
x3 : : : · · · ∆nf(x0)
: : : ∆2f(xn−2)

xn−1 : ∆f(xn−1)
xn f(xn)

✷

7.5 Remarks on Polynomial Interpolation

The problem with polynomial interpolation? it seems overkill to use a 99th

degree polynomial to fit 100 data points. But the main problem is this: high
degree polynomials are very smooth but are usually very oscillatory. This is
particularly troublesome if the data comes from an experiment, which means
that the data is very noisy. In the homework you get to explore how high
degree polynomial interpolation can lead to unusual results.

A radically different approach, much favored now in modern computing, is
to use low order polynomials and control the error by making the grid very
fine. This, of course, assumes that you have control of generating the data
points.

Two of these low order methods we’ll consider are ‘’piece-wise linear polyno-
mial interpolation,” which uses linear functions to connect the points, and
“cubic splines.”
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Splines are thin elastic rod like rulers drafters use. The splines are made of
lead, coted with plastic. They use these to connect the points on a picture,
effectively interpolating between the “knots” or fixed points in a nice smooth
way, as will cubic polynomials can appear to the eye.

Later on we’ll consider “trigonometric interpolation” which uses trigonomet-
ric functions which are infinitely smooth.

7.6 Spline Interpolation

Previously we discussed how to compute an approximation of a function over
some finite interval [a, b] using a single polynomial. Ignoring the practical
issue of the inherent ill-conditioning of using high degree polynomials, attain-
ing very high order accuracy was achieved by increasing the degree of the
interpolant polynomial. An alternative strategy to obtain more accuracy, of
course, is to use more points. If we are able to use more points, but very low
order polynomials for each segment and then patch these up, we can circum-
vent the ill-conditioning problem and yet obtain good accuracy. Moreover, if
we have good linear algebraic solvers (fast and efficient), we also get a high
degree of efficiency in this procedure.

We will cover piece-wise linear and cubic splines. First, the piece-wise linear
case. Piecewise linear are very simple and useful because of their simplicity
and the resulting efficiency in obtaining an interpolation. They are especially
useful in problems which require their integration, when the data set is huge,
when a low accuracy interpolation is adequate. Piece-wise constant splines
are used as well (for example in low order Riemann solvers in hyperbolic
partial differential equations). Parabolic splines are not all that useful: they
lack inflection points and thus their utility is very restricted. Cubic is then
the next order up, and is the most common of the splines, especially in
graphics.

Preliminaries:

Impose a subdivision of the interval I = [a, b] as follows:

D ≡ a = x0 < x1 < x2 < x3, . . . , xn−1 < xn = b.

Use a low-degree polynomial on each subinterval [xi, xi+i], i = 0, 1, 2, · · · , n−
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1, patching these together using smoothness constraints.

Let ∆xi ≡ xi+1 − xi,

i.e. the grid points may or may not be equally spaced.

For convenience, define |∆| ≡ max1≤i≤n−1∆xi, the largest subinterval.

Again, we can control accuracy by choosing |∆| to be as small as is needed.
This, under the assumption that the local error is mainly concentrated where
the grid points are most distant. This, of course, is not the entire story, as
it also depends on the spectrum of the data itself.

Let Pm be the family of polynomials of degree at most m. We define a class
of functions

Sk
m(∆) =

{
s : s ∈ Ck[a, b], s

∣∣∣
[xi,xi+1]

∈ Pm, i = 1, 2, · · · , n− 1
}

(18)

where m ≥ 0, k ≥ 0. Sk
m(D) the “spline functions of degree m and smooth-

ness class k” relative to the subdivision D.

The continuity assumption of (18) is that the kth derivative of s is con-
tinuous everywhere on [a, b], and in particular, at the grid points xi, (i =
1, 2, 3, . . . , n− 1) of D.

N.B. If k = m then s ∈ Sm
m consist of 1 polynomial of degree m and the

whole interval [a, b]. We don’t want this, so k < m.

7.6.1 Piecewise Linear Case

Here we want s ∈ S0
1 (D) such that for f on [a, b]

s(xi) = fi; where fi = f(xi), i = 1, 2, . . . , n.

We will assume that the interpolation points coincide with the grid locations
xi, although this is not a requirement.

Here, take s1(f ; x) = fi+(x−xi)
fi+1−fi
xi+1−xi

for xi ≤ x ≤ xi+1, i = 1, 2, 3, . . . , n−
1. This is shown schematically in Figure 34.
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a=x_1 x_2 x_3 x_4 .... x_(n-1) x_n=b

f_1

f_2

f_3 f_4
f_(n-1)

f_n

Figure 34: Discretization of the domain.

What is the error? First recall from polynomial interpolation that for x ∈
[x0, x1] the error for polynomial interpolaters of degree 1 is

f(x)− p1(x) =
1

2!
f ′′(ξ(x))

1∏

i=0

(x− xi),

for x ∈ (x0, x1). This can be expressed equivalently as

f(x)− p1(x) = f [x0, x1, x]

1∏

i=0

(x− xi),

for x ∈ (x0, x1).

The expression for the linear interpolator can also be written in terms of
Newton divided differences as

s1(f ; x) = fi + (x− xi)f [xi, xi+1].

If f ∈ C2[a, b] the error is then

f(x)− s1(f ; x) = (x− xi)(x− xi+1)f [xi, xi+1, x], x ∈ [xi, xi+1]
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|f(x)− s1(f ; x)| ≤
(∆xi)

2

8
max

x ∈ [xi, xi+1]
|f ′′|, with x ∈ [xi, xi+1]

thus ||f(x)− s1(f ; x)||∞ ≤
1

8
|∆|2||f ′′||∞

Which shows that the error can be made arbitrarily be make arbitrarily small
by choosing the ∆xi’s small: the cost is the volume of data.

A Basis for S◦
1 (∆): How many degrees of freedom do we have? We have 2

per segment and there are n− 1 segments. Hence

dimS−1
1 (D) = 2n− 2

Each continuity requirement adds 1 equation reducing the degrees of freedom
by 1 per segment. Continuity at all interior points xi, i = 2, 3, . . . n − 1
eliminates the free parameter:

∴ dimS◦
1 (D) = 2n− 2− (n− 2) = n.

So the basis of the space S◦
1 (D) consists of n basis functions.

The Basis Functions: A convenient but not unique set of basis functions are
defined as

Bi(x) =





x−xi−1

xi−xi−1
if xi−1 ≤ x ≤ xi

xi+1−x
xi+1−xi

if xi ≤ x ≤ xi+1

0 otherwise

We ignore 1st equation at i = 1 and ignore 2nd equation at i = n.

These Bi’s are called “hat” functions, and an illustration of them appear in
Figure 35

We expect that these Bi(x) form a basis of S◦
1 (∆).

To prove this we must show

(i) {Bi}ni=1 are linearly independent
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a=x_1 x_2 x_3 x_4 x_(n-1) x_n=b....x_5

B_nB_(n-1)B_1 B_2 B_3 B_4

Figure 35: The “hat” functions Bi(x).

(ii) They span the space S◦
1 (∆)

Proof: Use Bi(xj) = δij to show this is true.

✷

Application: Least-Squares Approximation: The L2 approximation of data
given at xi i = 1, 2, 3, . . . , n, corresponding to a ≤ xi ≤ b is of course trivial.
Suppose we want to find the interpolated value at any arbitrary x ∈ [a, b]:

Given f ∈ C[a, b], find ŝ1(f ; ·) ∈ S◦
1 (D) such that

∫ b

a

|f(x)− s1(f ; x)|2dx ≤
∫
[f(x)− s(x)]2dx ∀s ∈ S◦

1 (∆)(19)

Writing ŝ(f ; x) =
n∑

i=1

ĉiBi(x) from (19)

ŝ1(f ; x)− f(x) = E
n∑

i=1

ĉiBi(x)− f(x) = E
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where E is the error. Next, multiply both sides by Bj(x) and integrate:

n∑

i=1

[∫ b

a

Bi(x)Bj(x)dx

]
ĉi ≈

∫ b

a

Bi(x)f(x)dx i = 1, 2, 3, . . . , n.(20)

Bi is nonzero on (xi, xi+1)⇒
∫ b

a

Bi(x)Bj(x)dx = 0 if |i− j| > 1.

The resulting system of equations generates a matrix which is tridiagonal.
An easy calculation (integrate (20)) shows that

1

6
∆xi−1ĉi−1 +

1

3
(∆xi−1 +∆xi)ĉi +

1

6
∆xiĉi+1 = bi;

i = 1, 2, 3, · · · , n(21)

Note that ∆x0 = 0 ∆xn = 0, by convention.

The matrix problem in (21) is symmetric positive definite and easy to solve
using the algorithm (12.2.1).

✷

7.6.2 Cubic Splines

This is the most popular piece-wise interpolation technique. Recall that the
methodology in splining is to use low order polynomials to interpolate from
grid point to grid point. This is ideally suited when one has control of the
grid locations and the values of the data being interpolated (i.e. perhaps if
you have a way to produce them at any location). In this case we can control
the accuracy by making the grid spacing sufficiently small.

Why cubic splines? Because cubic splines are the lowest order polynomial en-
dowed with inflection points. Think about interpolating a set of data points
using parabolic (quadratic) functions: without inflection points the interpo-
lation can look rather strange. Why not slightly higher order? because it is
more expensive and the eye cannot really discern an appreciable difference
between the cubic and higher order interpolating splines, provided the data
set is sufficiently well distributed over the interval.
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Here we could have used the method presented in connection with the piece-
wise linear splines to construct the spline interpolation of the data using
cubics. However, we purposely show an alternative technique, which is less
elegant but nevertheless revealing. We use the most mundane and common
technique in numerical methods: generate n linearly independent equations
for n unknowns. Higher-order splines can be constructed similarly, however,
the process becomes tedious.

Let Spkn(x) be an n + 1-member family of spline functions, where k is the
polynomial degree of the splines. Consider the cubic splines S3

n(x), which
satisfy these properties:




S3
n(x) ∈ C2[a, b] i.e. S3

n(x), ∂xS
3
n(x), ∂

2
xS

3
n(x) continuous on [a, b]

S3
n(xj) = f(xj) ≡ fj 0 ≤ j ≤ n i.e.S3

n(x) interpolates f(x) on [a, b]
S3
n(x) is a cubic polynomial on each interval [xj , xj+1] 0 ≤ j ≤ n− 1.

(22)

So on the interval [x0, x3] S
3
n(x) is represented by the cubic polynomials S3

0

on [x0, x1], S
3
1 on [x1, x2] and S3

2 on [x2, x3].

Since S3
j (x) ∈ P3 it has 4 coefficients. However, we would like it to satisfy

(22) therefore we have 12 coefficients to pin down (count them).

Since each S3
j (x) ∈ P3, its derivatives are continuous for any open interval

x ∈ (xj , xj+1), therefore we need to focus on obtaining continuity at each node
xj location, where cubics will “patch together”with second order continuity.

Without loss of generality, [a, b] ≡ [x0, x3]. Here is how we can generate 12
equations for the 12 unknowns.

Six of the equations are generated by the conditions
{

S3
0(x0) = f0 S3

1(x1) = f1 S3
2(x2) = f2 S3

2(x3) = f3
S3
0(x1) = S3

1(x1) S3
1(x2) = S3

2(x2).

Since S3
n(x) and its first two derivatives are continuous at x1 and x2 we can

get four more equations:
{

∂xS
3
0(x1) = ∂xS1(x1) , ∂2

xS
3
0(x1) = ∂2

xS
3
1(x1)

∂xS
3
1(x2) = ∂xS

3
2(x2) , ∂2

xS
3
1(x2) = ∂2

xS
3
2(x2)

All told we have 10 equations thus we expect an infinite number of solutions
to the system of equations, i.e. a family of 2-parameter solutions. We can
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obtain 2 more equations by either assuming that

∂2
xS

3(x0) = ∂2
xS

3(x3) = 0

(“free” or “natural” boundary condition).

∂xS
3(x0) = ∂xf0 and ∂xS

3(x3) = ∂xf3

(“clamped” boundary condition).

Generalizing, the complete list of properties is

S3
j is a cubic polynomial on [xj , xj+1] j = 0 · · ·n− 1.(23)

S3(xj) = fj j = 0 · · ·n(24)

S3
j+1(xj+1) = S3

j (xj+1) j = 0 · · ·n− 2(25)

∂xS
3
j+1(xj+1) = ∂xS

3
j (xj+1) j = 0 · · ·n− 2(26)

∂2
xS

3
j+1(xj+1) = ∂2

xS
3
j (xj+1) j = 0 · · ·n− 2,(27)

plus one of the following is satisfied:

(i) ∂2
xS

3(x0) = ∂2
xS

3(xn) = 0 free, OR

(ii) ∂xS
3(x0) = ∂xf0 and ∂xS

3(xn) = ∂xfn clamped.

Note that for the clamped case we need derivative information: either from
the properties of f(x) at the ends or by making an assumption.

Exercise: apply above conditions on

S3
j (x) = aj + bj(x− xj) + cj(x− xj)

2 + dj(x− xj)
3,(28)

to construct the splines. Use hj = xj+1 − xj , with j = 0, ..., n − 1, and
solve for c ≡ [c0, c1, ..., cn]. Show that for the natural end conditions, i.e.
∂2
xS

3(a) = ∂2
xS

3(b) = 0, the full family of splines is given by the solution to
the system

Ac = g
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A is (n+ 1)× (n + 1) matrix given by

A =




1 0 0 0 0 0
h0 2(h0 + h1) h1 0 0 0
0 h1 2(h1 + h2) h2 0 0

0 0
. . .

. . .
. . . 0

0 0 0 hn−2 2(hn−2 + hn−1) hn−1

0 0 0 0 0 1




c =




c0
c1
c2
:
:
cn




g =




0
3
h1
(a2 − a1)− 3

h0
(a1 − a0)

:
:

3
hn−1

(an − an−1)− 3
hn−2

(an−1 − an−2)

0




Similarly, for the clamped case, ∂xS
3(a) = ∂xf(a) and ∂xS

3(b) = ∂xf(b),

Ac = g

is explicitly given by

A =




2h0 h0 0 0 0 0
h0 2(h0 + h1) h1 0 0 0
0 h1 2(h1 + h2) h2 0 0

0 0
. . .

. . .
. . . 0

0 0 0 hn−2 2(hn−2 + hn−1) hn−1

0 0 0 0 hn−1 2hn−1




c =




c0
c1
:
:
cn




g =




3
h0
(a1 − a0)− 3f ′(a)

3
h1
(a2 − a1)− 3

h0
(a1 − a0)

:
:

3
hn−1

(an − an−1)− 3
hn−2

(an−1 − an−2)

3f ′(b)− 3
hn−1

(an − an−1)




✷

Algorithm Natural Cubic Spline
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input n; x0 · · ·xn, a0 = f(x0) · · ·an = f(xn)
output aj, bj , cjdj for j = 0, 1 · · ·n− 1

Step 1 for i = 1 · · ·n− 1 hi = xi+1 − x1

Step 2 for i− 1 · · ·n− 1

ai =
3

hi
(ai+1 − ai)−

3

hi−1
(ai − ai−1)

Step 3 l0 = 1
µ0 = 0
z0 = 0

Step 4 for i = 1 · · ·n− 1
li = 2(xj+1 − xi−1)− hi−1µi−1

µi = hi/li
zi = (αi − hi−1zi−1)/li

Step 5 ln = 1
xn = 0
cn = 0

Step 6 for j = n− 1 · · ·0
cj = zj − µjcj+1

bj = (aj+1 − aj)/hj − hj(cj+1 + 2cj)/3
dj = (cj+1 − cj)/(3hj)

Step 7 output (aj, bj , cj, dj for j = 0− n− 1)

STOP

Clamped Cubic Spline Case

input n, x0 · · ·xn, a0 = f(x0) · · ·an = f(xn);FPO = f ′(x0)FPN = f ′(xn)

output (aj, bj , cj, dj for j = 0 · · ·n− 1)

Step 1 for i = 0 · · ·n− 1 hi = xi+1 − xi
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Step 2 Set α0 = 3(a1 − a0)/h0 − 3 FPO
αn = 3 FPN −3(an − an−1)/hn−1

Step 3 for i = 1, 2 · · ·n− 1

αi =
3
hi
(ai+1 − ai)− 3

hi−1
(ai − ai−1)

Step 4 Set l0 = 2h0

µ0 = 0.5
z0 = α0/l0

Step 5 For i = 1, 2 · · ·n− 1
li = 2(xi+1 − xi−1)− hi−1µi−1

µi = hi/li
zi = (αi − hi−1zi−1)/li

Step 6 ln = hn−1(2− µn−1)
zn = (αn − hn−1zn−1)/ln
cn = zn

Step 7 for j = n− 1, . . . , 0
set cj = zj − ujcj+1

bj = (aj+1 − aj)/hj − hj(cj+1 + 2cj)/3
dj = (cj+1 − cj)/(3hj)

Step 8 Output (aj , bj, cj , dj for j = 0 · · ·n− 1)

STOP

✷

Figures 36 and 37 illustrate how cubic a spline interpolation compares with a
Lagrange polynomial interpolation. It also shows the effect of using different
conditions on the ends of the interval in the spline interpolation. In both cases
we are using the same knots. The derivative information for the clamped
spline case was easy to derive from the function itself. However, we emphasize
that this information is not always readily available. The result of the free
conditions at the end points for the cubic spline clearly show an effect on the
error near the end points.
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Approximating f(x) = x sin(2 π x + 1) using Lagrange polynomials

Approximation 
Exact Function

Figure 36: Approximation of f(x) = x sin(2πx + 1) using a sixth order
Lagrange polynomial.

7.7 Trigonometric Interpolation

7.7.1 Fourier Series Review

Definition: A function f = f(x) over R is said to be periodic with period
T > 0 if f(x+T ) = f(x) ∀x. The smallest period is the fundamental period.

If f(x) is periodic, and

∫ T/2

−T/2

|f(x)|2dx <∞, then we can write

f(x) =
a0
2

+
∞∑

k=1

[ak cos(kwx) + bk sin(kwx)]

where w =
2π

T
, and the coefficients ak’s and bk’s can be found by ak =

1

T

∫ T/2

−T/2

f(x) cos(kwx)dx bk =
1

T

∫ T/2

−T/2

f(x) sin(kwx)dx. We can also write:

f(x) =
∞∑

k=−∞
cke

ikwx

140
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Approximating f(x) = x sin(2 π x + 1) using Natural cubic splines

Cubic spline Approx.
Exact Function      
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Approximating f(x) = x sin(2 π x + 1) using Clamped Cubic Splines

Clamped Cubic spline Approx.
Exact Function              

Figure 37: Approximation of f(x) = x sin(2πx+ 1) using cubic splines. The
first figure uses the natural cubic spline end conditions. The second figure
uses the clamped cubic spline conditions.

141



& where

ck =
ak − ibk

2
and c−k =

ak + ibk
2

Without loss of generality in what follows we will scale x so that the period
is T = 2π in the new variable: let

f̂(x̃) = f(x) , x̃ =
2π

T
x.

Furthermore, we drop the tildes and the hats from the scaled independent
and dependent variables, respectively.

Consider 2π-periodic functions which are

∫ π

−π

|u(x)|2dx <∞ , we say that u ∈ L2(−π, π)

i.e. belonging to the space of functions L2-periodic, with period 2π. In this
space the norm is given in terms of the inner product as

(u, v) =

∫ T

−π

u(x)v(x)dx

here u is the complex conjugate of u.

Recall: if X is a linear vector space over C, then a map

u, v ∈ X → (u, v) ∈ C

such that

(i) (u, v) = (u, v) (symmetry),

(ii) (u, λv) = λ(u, v) (scaling) λ ∈ C, a number

(iii) (u, v + w) = (u, v) + (u, w) (linear in second term)

(iv) (u, v) ≥ 0 and (u, u) = 0 implies u = 0.
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if (i)− (iv) holds then (·, ·) is called an inner product on X.

Fact: if (·, ·) is an inner product of X then

||u|| = (u, u)1/2

and || · || is a norm on X.

Recall “Cauchy Schwarz inequality:”

|(u, v)| ≤ ||u|| ||v||

definition: u, v ∈ L2 are orthogonal if

(u, v) = 0

✷

Let φk(x) ≡ eikx k ∈ Z then (φk, φj) =

{
2π if k = j
0 k 6= 0

Claim

u(x) =
∞∑

k=−∞
ûkφk(x) , Fourier series representation

where

ûk =
1

2π

∫ π

−π

e−ikxu(x)dx =
1

2π
(φk, u)

are the Fourier coefficients.

Note: if
∞∑

k=−∞
|ûk| <∞ the u(x) would be continuous by Lebesgue dominated

convergence.

This is not true in general for u ∈ L2. What is true is that if

∞∑

k=−∞
|ûk|2 < ∞

then

2π
∞∑

k=−∞
|ûk|2 = ||u||2L2
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This is known as Parseval’s Identity.

In fact a Fourier series does not in general converge pointwise, but rather, in
the L2 sense:

Let sn,m(x) =

n∑

k=−m

ûkφk(x)

a partial sum
lim

n,m→∞
sn,m(x) = u(x) in L2

lim
n,m→∞

||sn,n(x)− u||L2 = 0.

(Look up convergence of the Fourier series in any advanced calculus book).

A classic example that illustrates how the Fourier series converges for non-
smooth functions is the Fourier reconstruction of a step function. As you
might recall the Fourier representation produces the Gibbs phenomenon,
which is the appearance of concentrated oscillations at the edges of the step.
As the number of Fourier terms is increased, the oscillations get more con-
centrated and stronger at the edges, but do not disappear. So the Fourier
series does not converge uniformly. Try this out and convince yourself of this.

A very convenient feature of Fourier series is the following. The Fourier
representation of the derivative of a function is computed quite simply:

(̂∂xu)k = ikûk

(̂∂n
xu)k = (ik)nûk

So if u ∈ H1 (i.e. u ∈ L2 and ∂xu ∈ L2, in particular, no delta functions), by
Parseval’s Identity:

∫
|∂xu|2dx = 2π

∞∑

k=∞
k2|ûk|2 <∞.

If we had n derivatives in L2 then

∫
|∂n

xu|2dx = 2π
∞∑

k=−∞
k2n|ûk|2 <∞

✷
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Suppose that further conditions are placed on the function and its derivatives.
Could we get convergence in other norms?

∞∑

k=−∞
|ûk| <∞ would be really good convergence: let us further examine the

case when u ∈ H1. Hence

∑

k∈Z

(1 + k2)1/2

(1 + k2)1/2
|ûk| =

∑

k∈Z

1

(1 + k2)1/2
(1 + k2)1/2|ûk|.

The term ∑

k∈Z

(1 + k2)1/2

(1 + k2)1/2
|ûk|

converges and ∑

k∈Z

1

(1 + k2)1/2
(1 + k2)1/2|ûk|

converges because u ∈ H1. Hence, the Fourier series converges uniformly. So
if u ∈ Hn then the Fourier series converges uniformly for the n−1 derivative.

If u(x) is smooth, the Fourier series converges rapidly. In fact, we get what is
known as spectral convergence. However, if u is not smooth the convergence
can be very slow.

One place on the domain where this might be a problem in practical appli-
cations at x = −π and x = π when the function we are dealing with is not
periodic.

Recall that the Fourier series reconstruction of a function defined over the
period, here [0, 2π], produces a periodic extension of the function, i.e. the
function is defined over the whole real line and is 2π-periodic. Reconstruction
of non periodic functions yields slow (or just plain bad) convergence.

We can improve the convergence of a Fourier series reconstruction by con-
structing periodic extensions of a function that is not 2π periodic.

In Figure 38 we illustrate a periodic extension that is periodic everywhere
except at the end points. We want to avoid this to improve the convergence
of the reconstruction.
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x−π π

Figure 38: Extension of a function which is non-periodic (here, periodic
everywhere except for the end points).

−π π

Figure 39: Extension of a non-periodic function.

We have to use our creativity to construct good periodic extensions and these
depend on the shape of the function. Here are some examples.

A) Suppose u(−π) = u(π) = 0 , but not periodic: extend as in Figure
39

The periodic extension here is −u(x−2π). The resulting function now
has period 2π.

B) Suppose u(−π) = u(π) = constant. In this case, use above trick after
subtracting the constant value out of the function. The constant is
restored afterwards.

C) Suppose ∂xu(−π) = ∂xu(π) = 0. In this case use an even extension of
u as in figure. Again, resulting period is 4π.

D) Mixed: u(−π) = 0, ∂x(π) = 0. In this case the period would be 8π.
Exercise: construct a periodized function, with period 4π, with the
above boundary conditions at ±π.
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−π π

Figure 40: Extension of a non-periodic function.

−π π

Figure 41: Extension of a non-periodic function.

E) By zero padding if the function is compactly-supported with support
smaller than 2π, i.e. u 6= 0 in some continuous interval smaller than
the period, and u = 0 (or a constant) otherwise. The period remains
2π. Here, zero-padding achieves an interpolation in Fourier space. Note
that zero-padding in Fourier space achieves an interpolation in x space.

7.7.2 Interpolation using Fourier Polynomials

Consider periodic functions, that is, functions that satisfy

f(t) = f(t+ T ) ∀t ∈ (−∞,∞)

We call T the period. Without loss of generality we will consider 2π-periodic
functions (there is no difficulty considering larger or smaller T , it’s just scal-
ing):

f(t+ 2π) = f(t).

We can approximate f(t) by a trigonometric polynomial, as:

pn(t) = a0 +
n∑

ℓ=1

[aℓ cos(ℓ t) + bℓ sin(ℓ t)](29)
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with |an|+ |bn| 6= 0.

For an nth degree trigonometric polynomial approximation of f(x) we want
f(tℓ) = pn(tℓ) ℓ = 0, 1, 2, . . . , 2n where

0 ≤ t0 < t1 < t2 · · · < t2n < 2π

and we need 2n + 1 points in t since we’re needing to fix 2n + 1 coefficients
in (29). Recall that eiθ = cos θ + i sin θ, hence (29) can be recast as

pn(t) =
n∑

ℓ=−n

cℓe
i ℓ t

where c0 = a0 cℓ =
1

2
(aℓ − ibℓ) c−ℓ = 1

2
(aℓ + ibℓ), for 1 ≤ ℓ ≤ n. So, to

determine the {cℓ}’s we can find {aℓ} and {bℓ} (or vice versa).

Let z = eit then

pn(z) =

n∑

ℓ=−n

cℓ z
ℓ.

Thus znpn(z) is a polynomial of degree ≤ 2n.

Interpolation requires that

pn(zℓ) = f(tℓ) ℓ = 0, 1, · · · , 2n.(30)

So we take 2n+1 distinct and equally-spaced points on the unit circle |z| = 1.

To see that (30) is uniquely solvable, note that (30) is equivalent to

Q(zℓ) = znℓ f(tℓ) ℓ = 0, 1, · · ·2n
which is a polynomial interpolation problem with 2n + 1 distinct nodes
z0, z1, · · · , z2n. This can be used to establish uniqueness of the interpolat-
ing polynomial: Take S(zℓ) = pn(zℓ)−Q(zℓ) has degree ≤ 2n and has 2n+1
zeros, for ℓ = 0, 1, ..., n, hence S(zℓ) := 0.

7.7.3 Evenly Spaced Grid Points

Take

tℓ =
2π

2n + 1
ℓ ℓ = 0, 1, . . . , 2n(31)
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Theorem: Let {tℓ}2nℓ=0 be given by (31). Then the coefficients ck of

pn(tℓ) ≡
n∑

k=−n

cke
iktℓ

for ℓ = 0, 1 · · · , 2n are given by

ck =
1

2n + 1

2n∑

ℓ=0

e−iktℓf(tℓ) k = −n, . . . , n.

Proof: Want pn(tℓ) = f(tℓ) for ℓ = 0, 1, . . . , 2n. Hence

n∑

m=−n

cme
imtℓ = f(tℓ) for ℓ = 0, 1, . . . , 2n.

Multiply both sides by e−iktℓ and sum over 0 ≤ ℓ ≤ 2n,

2n∑

ℓ=0

n∑

m=−n

cme
i(m−k)tℓ =

2n∑

ℓ=0

e−iktℓf(tℓ)

and interchange the order of summations on the left hand side:

n∑

m=−n

cm

2n∑

ℓ=0

ei(m−k)tℓ

︸ ︷︷ ︸
look at this now

=
2n∑

ℓ=0

e−iktℓf(tℓ).(32)

When m = k
2n∑

ℓ=0

ei(m−k)tℓ =

2n∑

ℓ=0

1 = 2n+ 1

When m 6= k, first note that i(m− k)tℓ =
iℓ(m− k)2π

2n+ 1
.

Let r = ei(m−k)2π/(2n+1) and note r2n+1 = 1. Thus
2n∑

ℓ=0

ei(m−k)tℓ =
2n∑

ℓ=0

rℓ =

r2n+1 − 1

r − 1
= 0. From (32) ck =

1

2n+ 1

2n∑

ℓ=0

e−iktℓf(tℓ) k = −n, · · ·n.
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Further




aℓ = cℓ + c−ℓ =
1

2n+1

2n∑

k=0

(e−iℓtk + eiℓtk)f(tk) =
2

2n+ 1

2n∑

k=0

f(tk) cos ℓtk

bℓ = i(cℓ − cℓ) =
2

2n + 1

2n∑

k=0

f(tk) sin ℓtk

✷

Example Trigonometric polynomial interpolation of degree 2 to f(t) = esin t+cos t

on [0, 2π]:

p2(t) =
a0
2

+ c1 cos t + c2 cos 2t+ b1 sin t + b2 sin 2t

such that p2(tℓ) = esin tℓ+cos tℓ tℓ =
2π

5
ℓ where ℓ = 0, 1, 2, 3, 4.

aℓ =
2

2n+ 1

2n∑

k=0

f(tk) cos ℓtk

bℓ =
2

2n + 1

2n∑

k=0

f(tk) sin ℓtk

⇒ a0 = 3.12764 a1 = 1.24872 a2 = −0.09426 b1 = 1.27135 b2 = 0.49441

The function and the interpolation are shown in Figure 42

✷

8 NUMERICAL DIFFERENTIATION

Recall that the derivative of a function f(x) at a point x0 is

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
.(33)

Computing the quotient numerically does not seem to be such a big problem.
An efficient process by which we find an approximation to the limit is not
clear. Actually, as we will present later on, even taking the quotient CAN be
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Figure 42: exact (solid), versus interpolated (dashed) versions of the function,
using 5 interpolation points.

a problem on a computer: using finite precision we can wind up with serious
loss of precision due to the subtraction and the division of quantities.

Here we will present one way to obtain derivatives, by divided differences.
One can also obtain derivatives of functions by some other means: for L2-
periodic functions we might use spectral methods instead.

In what follows we’ll assume that

x0 ∈ (a, b), f ∈ C2[a, b]

x1 = x0 + h, with h 6= 0 small so that x1 ∈ (a, b).

Taking the first terms in the Taylor series, about x = x0,

f(x1) = f(x0 + h) ≈ f(x0) + hf ′(x0).

More precisely.

f(x0 + h) = f(x0) + hf ′(x0) +
1

2
h2f ′′(ξ) with ξ ∈ (x0, x0 + h).
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Therefore

f ′(x0) =
f(x0 + h)− f(x0)

h
− 1

2
hf ′′(ξ).(34)

Comparison of (33) and (34) shows that replacing the limiting procedure by
a difference introduces an error, which we will call the truncation error. In
this case the truncation error is

1

2
hf ′′(ξ) = O(h).

Using (34) with h > 0 we obtain the “first order forward difference formulat
for the derivative”; when h < 0 we obtain the first-order backward difference
formula. The order alludes to the order of the truncation error.

Let’s look at how this truncation error shows up:

Example Take f(x) = ln x, and first, compute the derivative at x0 = 1.8,
using several values of h:

f(1.8 + h)− f(1.8)

h
h > 0

used to find f ′(1.8) with error

|hf ′′(ξ)|
2

=
|h|
2ξ2
≤ |h|

2(1.8)2
where 1.8 < ξ < 1.8 + h

տ from f ′′

h f ′ |h|
2ξ2

0.1 0.5406722 0.0154
0.01 0.5546180 0.00154
0.001 0.55554013 0.000154

A plot of the truncation error shows that the error drops by two whenever
the size of h drops by two, say. The derivative of the same function but now
at x0 = 0.2 reveals an interesting aspect of the algorithm:
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h f ′ |h|
2ξ2

0.1 10.98612 1.25
0.01 304.4522 0.125
0.001 5303.305 0.0125

In both cases we see the error dropping inversely with the size of h. However,
for x0 = 1.8 we see the changes in the value of f ′ are small and so is the error.
For x0 = 0.2, however, the opposite is true. It seems that it matters what
x0 one chooses in the evaluation of the derivative. This is indeed the case,
but it also matters what function you are diffentiating. This is an important
aspect of numerical analysis called “sensitivity analysis” or “error analysis”.
Later on we will discuss this in the context of “ill-conditioning”.

✷

More general derivative formulas:

A way to derive just about any derivative and to whatever truncation error
you might want is via Lagrange polynomials (you can do this very efficiently
using Newton divided differences, actually). We present here how this is
done. It is a very general procedure, however, the issue of roundoff error is
being ignored here completely by assuming that the quantities have infinite
precision.

Suppose {x0, x1, · · · , xn} are n+1 distinct numbers, I is an interval contain-
ing such numbers, and f ∈ Cn+1(I).

Using Lagrange polynomials ℓ, we interpolate the function

f(x) =

n∑

k=0

f(xk)ℓk(x) +
(x− x0) · · · (x− xn)

(n + 1)!
f (n+1)(ξ)

for ξ(x) ∈ I. The second term is the “error” term.

Differentiating:

f ′(x) =
n∑

k=0

f(xk)ℓ
′
k(x) +

d

dx

[
(x− x0) · · · (x− xn)

(n + 1)!

]
f (n+1)(ξ(x))

+
1

(n+ 1)!
(x0 − x0) · · · (x− xn)

d

dx

(
f (n+1)(ξ(x))

)
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What is the truncation error?

If x = xk then term involving Dx[f
n+1(ξ)] = 0. Therefore,

f ′(xk) =
n∑

j=0

f(xj)ℓ
′
j(xk) +

f (n+1)(ξ(xk))

(n+ 1)!
Πn

j=0
j 6=k

(xk − xj)

which is equivalent to the n+ 1-point formula, since

∂

∂x

n∏

j=0

(x− xj) =

n∑

j=0

n∏

i=0
i6=j

(x− xi), if x = xk ⇒
n∏

j=0
j 6=k

(xk − xj).

One might think that the higher the truncation error, the more accurate the
answer. In general, using more points leads to greater accuracy. But more
functional evaluations and possible round-off error. Thus, we must balance
truncation error versus round-off error and speed benefits. One could instead
use a low order formula but use a finer h to obtain a desired accuracy, and
in fact, in most applications, this is the way to go.

Most common are forward and backward formulas. But other useful ones are
the 3 and 5 point formulas:

ℓ0(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
ℓ′0(x) =

2x− x1 − x2

(x0 − x1)(x0 − x2)

ℓ1(x) =
(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
ℓ′1(x) =

2x− x0 − x2

(x1 − x0)(x1 − x2)

ℓ′2(x) =
(2x− x0 − x1)

(x2 − x0)(x2 − x1)

Therefore,

f ′(xj) = f(x0)

[
2xj − x1 − x2

(x0 − x1)(x0 − x2)

]

+f(x1)

[
2xj − x0 − x2

(x1 − x0)(x1 − x2)

]
(35)

+f(x2)

[
2xj − x0 − x1

(x2 − x0)(x2 − x1)

]
+

1

6
f (3)(ξj)

d

dx

2∏

i=0
i6=j

(xj − xi)
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for each j = 0, 1, 2 and ξj = ξ(xj)

Use (35) on an evenly spaced grid. Let x1 = x0 + h x2 = x0 + 2h, with
h 6= 0

take xj = x0 , x1 = x0 + h, x2 = x0 + 2h

f ′(x0) =
1

h

[
−3
2
f(x0) + 2f(x1)−

1

2
f(x2)

]
+

h2

3
f (3)(ξ0)

Now take xj = xi

f ′(x1) =
1

h

[
−1
2
f(x0) +

1

2
f(x2)

]
− h2

3
f (3)(ξ1)

finally, when xj = x2,

f ′(x2) =
1

h

[
1

2
f(x0)− 2f(x1) +

3

2
f(x2)

]
+

h2

3
f (3)(ξ2)

Now, since x1 = x0 + h, x2 = x0 + 2h we can shift all of these so that we
can compare them: we can translate to get

f ′(x0) =
1

2h
[−3f(x0) + 4f(x0 + h)− f(x0 + 2h)] +

h2

3
f (3)(ξ0)

f ′(x0) =
1

2h
[−f(x0 − h) + f(x0 + h)]− h2

6
f (3)(ξ1)← equiv by letting h = −h

f ′(x0) =
1

2h
[f(x0 − 2h)− 4f(x0 − h) + 3f(x0)] +

h2

3
f (3)(ξ2)

But there are 2 formulas, really, since the last and first are equivalent by
letting h→ −h.

3-point formulas : Recall that

f ′(x0) =
1

2h
[−3f(x0) + 4f(x0 + h)− f(x0 + 2h)] +

h2

3
f (3)(ξ0)(36)

f ′(x0) =
1

2h
[f(x0 + h)− f(x0 − h)]− h2

6
f (3)(ξ1)(37)

where

ξ0 lies between x0 and x0 + 2h

ξ1 lies between (x0 − h) and (x0 + h)
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(37) error ∼ 1

2
(36) error, since data is examined on both sides of x0.

In a similar way one can derive 5-point formulas:

f ′(x0) =
1

12h
[f(x0 − 2h)− 8f(x0 − h) + 8f(x0 + h)− f(x0 + 2h)] +

h4

30
f 5(ξ)(38)

f ′(x) =
1

12h
[−25f(x0) + 48f(x0 + h)− 36f(x0 + 2h) + 16f(x0 + 3h)− 3f(x0 + 4h)] +

h4

5
f 5(ξ),(39)

x0 ≤ ξ ≤ x0 + 4h. Use h < 0 or h > 0 above to obtain left and right -going
formulas

(36) and (39) are useful at end of the interval.

How to get higher-order derivatives? Can use same procedure as above.

But here we take a different more heuristic approach. Say you need to find
the formula for the divided difference formula for f ′′(x0): expanding in Taylor
series

Example Take f ′′ Second derivative of f , for example, found by expanding

f(x0 + h) = f(x0) + f ′(x0)h + f (′′)(x0)
h2

2
+ f (3)(x0)

h3

6
+ f (4)(ξ+h)

h4

24
and

f(x0 − h) = f(x0)− f ′(x0)h + f
′′

(x0)
h2

2
− f (3)(x0)

h3

6
+ f (4)(ξ−h)

h4

24
.

Then, add and solve for f
′′

:

f
′′

(x0) =
1

h2

[
f(x0 − h)− 2f(x0) + f(x0 + h)

]
− h2

24

[
f (4)(ξ−h) + f (4)(ξh)

]

If f (4) is continuous on [x0−h, x0+h] the Intermediate Value Theorem yields

f ′′(x0) =
1

h2
[f(x0 + h)− 2f(x0) + f(x0 − h)]− h2

12
f (4)(ξ)

for some x0 − h < ξ < x0 + h.

✷

Earlier we mentioned that roundoff error might be a problem in calculating
derivatives using divided differences. For illustration, let us see how this
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shows up in the approximate calculation of a first derivative. So suppose we
take into account truncation and round off errors, we will approximate f ′.

Let f̃ be computed approximation to f and we pick the center-difference
formula for the calculation. The center difference formula yields

f ′(x0) =
1

2h
[f(x0 + h)− f(x0 − h)]− h2

6
f (3)(ξ1),

however, in the evaluation of the forward and backward terms we encounter
round-off error e(x0 + h) and e(x0 − h), respectively. That is, f(x0 ± h) =
f̃(x0 ± h) + e(x0 ± h). Therefore

f ′(x0)−
f̃(x0 + h)− f̃(x0 − h)

2h
=

e(x0 + h)− e(x0 − h)

2h
− h2

6
f (3)(ξ1).

Let us assume that |e(x0 ± h)| < ε where ε > 0 and |f (3)(ξ1)| < M where
M > 0 is some number. Then,

∣∣∣f ′(x0)−
f̃(x0 + h)− f̃(x0 − h)

2h

∣∣∣

≤ ε

h
+

h2

6
M.

Hence, in order to reduce truncation error, we need to reduce h. However, ε
h

grows as h gets smaller. Hence, making h too small can make the total error
be dominated by round-off (See ??).

In Figure 43 we show the error as a function of h for the central difference
approximation of a smooth function. It is clear from the star curve, which
corresponds to both the truncation and roundoff error contributions, that for
small h the error is dominated by the roundoff and for larger h it is dominated
by the truncation error. The optimal value of h, which minimizes the error
can be found by minimizing the expression for the error.

The table below shows the errors for different values of h. Note that for
larger values of h (h > 10−6) the errors seem to be decreasing by a factor
of approximately 100. This is due to the truncation error of the central
difference method. As the method is of order O(h2) when we decrease h by
ten we decrease the error by 100. But as h becomes smaller the round off
error of the computer becomes more important and the error starts to increase
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truncation error. Stars correspond to the the error from both truncation and
roundoff.

158



with decreasing ǫ. This increase is approximately by a factor of 10 with every
decrease of h by a factor of 10. This is because the ǫ

h
term is dominating for

small values of h. The value of M given in this example is f ′′′(x0) = 4804.6;
the value of (inferred from the table) is ǫ is 2× f(x0)×machine precision =
2.4246× 10−14.

h |Error| Estimated Error
10−1 8.124453 8.007729
10−2 8.008886× 10−2 8.007729× 10−2

10−3 8.007740× 10−4 8.007729× 10−4

10−4 8.007935× 10−6 8.007971× 10−6

10−5 8.172410× 10−8 8.250193× 10−8

10−6 6.761866× 10−9 2.504722× 10−8

10−7 2.348227× 10−7 2.424725× 10−7

10−8 1.194055× 10−6 2.424645× 10−6

10−9 1.763533× 10−5 2.424645× 10−5

10−10 7.233669× 10−6 2.424645× 10−4

10−11 1.704020× 10−4 2.424645× 10−3

10−12 1.757870× 10−2 2.424645× 10−2

10−13 1.493988× 10−1 2.424645× 10−1

10−14 2.230919 2.424645
10−15 1.875648 24.24645
10−16 218.3926 242.4645

✷

9 NUMERICAL INTEGRATION

The general methodology in approximating Riemann integrals is to replace
the integral by a finite sum: For example,

∫ b

a

f(x)dx ≈
n∑

i=0

cif(xi)

This procedure is called numerical Quadrature. This procedure makes sense
since integration is a linear operation, and if we need to estimate the integral
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using only a finite number of evaluations of the integrand, we must use a
linear combination of the function values. The freedom we have to devise
methods by which to do this comes in choosing where to evaluate the function,
and in choosing what the coefficients ci should be. One very natural way to
do this is with Lagrange polynomials:

Assume {xi}ni=0 are n+ 1 distinct points. Then

Pn(x) =

n∑

i=0

f(xi)li(x).(40)

Here li(x) are just the cardinal functions. Replacing,
∫ b

a

f(x) dx =

∫ b

a

n∑

i=0

f(xi)li(x) dx+

∫ b

a

n∏

i=0

(x− xi)
f (n+1)(ξ(x))

(n+ 1)!
dx

︸ ︷︷ ︸
error in approximation of f(x)

≡
n∑

i=0

cif(xi)

︸ ︷︷ ︸
quadrature formula

+
1

(n+ 1)!

∫ b

a

n∏

i=0

(x− xi)f
(n+1)(ξ(x))dx

︸ ︷︷ ︸
error E(f)

where ξ(x) ∈ [a, b] for each x. This then determines what the values of ci
are, where ci are known as the quadrature weights:

ci =

∫ b

a

li(x) dx, for each i = 0, 1, . . . , n.

We will mostly be using this formula in the case where the xi are evenly
distributed over the interval [a, b]. So,

xi = a + ih where h =
b− a

n

. In this case it is useful to make a change of variable when evaluating the
integral of the li(x). Let x = a + hu, then u = (x− a)/h. Hence,

ci =

∫ b

a

∏
j 6=i (x− xj)∏
j 6=i (xi − xj)

dx

= h

∫ n

0

∏
j 6=i (u− j)∏
j 6=i (i− j)

du

≡ hγi
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Notice that the value of γi is a number which is independent of a and b,
dependent only on n.

The formulas for 1st and 2nd Lagrange polynomials at equally-spaced intervals
generate the Trapezoidal Rule (see 9.1) and Simpson’s Rule (see 9.2).

9.1 Trapezoidal Rule:

Here we consider the case n = 1 in (40), i.e. linear approximation. In this

case h = b− a and γ0 =

∫ 1

0

u− 1

0− 1
du =

1

2
, and γ1 =

∫ 1

0

u− 0

1− 0
du =

1

2
. This

gives the trapezoidal rule approximation of the integral as

∫ b

a

f(x) dx ≈ h

2
(f(a) + f(b)) .

In order to estimate the error in this approximation, we need to estimate

E(f) =

∫ b

a

(x− a)(x− b)

2
f ′′(ξ(x)) dx.

Using the change of variables as before (x = a + hu), it is convenient to
rewrite this as

E(f) = h3

∫ 1

0

u(u− 1)

2
f ′′(ξ(a+ uh)) du.

We would like to be able to simplify this error term so that we do not have an
integral of an unknown function. It is the ξ(x) term that causes the difficulty.
We will use the Weighted Mean Value Theorem for this purpose.

Theorem (Weighted Mean Value Theorem)

Let f ∈ C[a, b], and g be integrable on [a, b], with the additional constraint
that g is either strictly positive or negative on [a, b] then there exists a con-
stant c in (a, b) such that

∫ b

a

f(x)g(x)dx = f(c)

∫ b

a

g(x)dx
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Note: The reason for the name of the theorem is that the formula can be
written as

f̄ ≡
∫ b

a
f(x)g(x) dx
∫ b

a
g(x) dx

= f(c),

where f̄ is the weighted mean value (for cases where g is non-negative.)

Proof: The proof is instructive and similar to the Mean Value Theorem proof.
We will restrict this proof to the case where g(x) is piecewise continuous and∫ b

a
g(x) dx 6= 0 although the theorem is more general than this.

Suppose that no constant c exists. Let f̄ =

∫ b

a
f(t)g(t) dt
∫ b

a
g(t) dt

. Since f(x) is a

continuous function, this means that either f(x) < f̄ for all x in (a, b) or
f(x) > f̄ for all x in (a, b). Without loss of generality, let us assume we are
in the first case. Also, without loss of generality, assume g(x) ≥ 0 on (a, b).
Then, multiplying the two inequalities together we obtain f(x)g(x) ≤ f̄ g(x).

Notice that if we had a strict inequality we would be done: just integrate
from a to b and the resulting formula would be

∫ b

a

f(x)g(x) dx < f̄

∫ b

a

g(x) dx

. Dividing through by the integral of g and recalling the definition of f̄ gives
the contradictory conclusion that f̄ < f̄ . Thus we would conclude that the
original assumption that no c in (a, b) with f(c) = f̄ exists is not correct,
and the theorem would be proved.

To get the strict inequality for the integral, we use the continuity of f(x), the

assumption that
∫ b

a
g(x) dx > 0, and our assumption that g(x) is piecewise

continuous. This allows us to conclude that g(d) > 0 at some point d in (a, b)
where g(x) is continuous. (If not, then g(x) = 0 except at a finite number of
points, and then the integral would have to be zero). At the point x = d we
know that f(d) < f̄ . Let ǫ = (f̄−f(d))/2. By continuity of f(x)g(x)− f̄ g(x)
at d, there is an interval (d− δ, d+ δ) ⊂ (a, b) where f(x)g(x) ≤ (̄f)g(x)− ǫ.
Integrating from a to b and splitting the interval into pieces we get

∫ b

a

f(x)g(x) dx =

∫ d−δ

a

f(x)g(x) dx+

∫ d+δ

d−δ

f(x)g(x) dx+

∫ b

d+δ

f(x)(g(x) dx
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≤ f̄

(∫ d−δ

a

g(x) dx+

∫ d+δ

d−δ

g(x) dx+

∫ b

d+δ

g(x) dx

)
− 2δǫ

=

∫ b

a

g(x) dx− 2δǫ <

∫ b

a

g(x) dx.

The case where
∫ b

a
g(x) dx = 0 is not hard to check, but since we will not

need it, we will skip it.

✷

Returning to our original problem of estimating the integral, we use the
theorem as follows: Since u(u − 1) does not change sign on [0, 1] and is
integrable, we can say that

h3

∫ 1

0

f ′′(ξ(a+ hu))
u(u− 1)

2
du = h3f ′′(ξ)

∫ 1

0

u(u− 1)

2
du

= h3f ′′(ξ)
[u3

6
− u2

4

∣∣∣
1

0
= −h3

12
f ′′(ξ)

Putting it all together we have

∫ b

a

f(x)dx =
h

2
(f(a) + f(b))− h3 f

′′(ξ)

12

where h = b− a and ξ ∈ (a, b).

Remark: The formula is exact if f ′′ = 0 (i.e. polynomial of degree 1 or less).
This exactness on polynomials of degree less than or equal to 1, is (what we
define to be) an order of accuracy of 1.

Definition: Quadrature rules are of the nth order of accuracy , if they are
exact in the approximation of an integral of an nth-degree polynomial.

Schematically, the situation in the Trapezoidal rule is shown in Figure 44

Exercise An important fact about the trapezoidal rule is obtained by con-
sidering the approximation of the integral of f(x) bounded and continuous,
with f(x+ T ) = f(x) for all x, i.e. periodic with period T . ✷
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xx_0 x_1

f(x)

Figure 44: The trapezoidal rule approximates the area under f(x) by a
trapezoid.

9.2 Simpson’s Rule:

Unlike the trapezoidal case which uses linear polynomials, the Simpson Rule
is what one obtains from using second-order Lagrange polynomials, i.e. quadratic
functions. Schematically, the approximation of the area under the function
f(x) over a finite interval is is shown in Figure 45

Let h =
b− a

2
, x0 = a, x1 = a + h, x2 = b, then, integrating the

Lagrage polynomial we obtain

∫ b

a

f(x)dx =

∫ x2

x0

[
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
f(x0) +

(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
f(x1)

+
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
f(x2)

]
dx+

∫ x2

x0

1

6
(x− x0)(x− x1)(x− x2)f

(3)(ξ(x))dx

164



xx_0 x_2
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Figure 45: The Simpson rule approximates the area under f(x) by a box
bounded above by a parabolic function.

Exercise Find the error applying the same technique used in the trapezoidal
case. You should get O(h4) error involving f (3)

✷

There is nothing special about how we went about constructing Simpson’s.
We can get a better approximation by using Taylor series as follows:

f(x) = f(x1)+f ′(x1)(x−x1)+
f ′′(x1)

2
+(x−x1)

2+
f ′′′(x1)

6
(x−x1)

3+
f (iv)(ξ(x))

24
(x−x1)

4

and integrating both sides of this equation it follows that
∫ x2

x0

f(x)dx = f(x1)(x2 − x0) +(41)

[
f ′(x1)

2
(x− x1)

2+

f ′′(x1)

6
(x− x1)

3 +
f ′′′(x1)

24
(x− x1)

4

]x2

x0

+

1

24

∫ x2

x0

f (iv)(ξ(x))(x− x1)
4dx.
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In the error term we obtain (x − x1)
4. Notice that (x− x1)

4 is nonnegative
over the interval so we can apply the Weighted Mean Value Theorem

1

24

∫ x2

x0

f (iv)(ξ(x))(x−x1)
4dx =

f (iv)(ξ1)

24

∫ x2

x0

(x−x1)
4dx =

f (iv)(ξ1)

120
(x−x1)

5
∣∣∣
x2

x0

for some ξ1 ∈ (x0, x2). Since the points are equally spaced, i.e. h = x2−x1 =
x1 − x0, we can rewrite (41) as

∫ x2

x0

f(x)dx =
h

3
[f(x0) + 4f(x1) + f(x2)]−

h5

12

[
1

3
f (iv)(ξ2)−

1

5
f (iv)(ξ1),

]
.

(work through this calculation to prove this to yourself). The resulting ap-
proximation of the integral is

∫ x2

x0

f(x) dx = 2hf(x1) +
h3

3
f ′′(x1) +

h5

60
f (iv)(ξ1).

We can approximate the second derivative term using the three point central
difference formula

f ′′(x1) =
f(x2)− 2f(x1) + f(x0)

h2
+

h2

12
f (iv)(ξ2),

which gives us the result

∫ x2

x0

f(x) dx =
h

3
[f(x0) + 4f(x1) + f(x2)]−

h5

36
f (iv)(ξ2) +

h5

60
f (iv)(ξ1).

Applying the Weighted Mean Value Theorem once more yields

Simpson’s rule

∫ x2

x0

f(x)dx =
h

3
[f(x0) + 4f(x1) + f(x2)] −

h5

90
f (iv)(ξ)

Simpson’s rule is exact for polynomials of degree 3 or less. This is one degree
higher than we would have expected based on the Lagrange polynomials.
It is a consequence of the symmetry of the grid points which leads to the
cancellation of what otherwise would have been the leading error term.

Remark: Both Trapezoidal and Simpson Rules are examples of what are
known as Newton-Cotes Formulas, since they use equidistant grid points.
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Higher order Newton-Cotes formulas are similarly derived, however, when the
function to be integrated is non-singular and non-highly oscillatory these low
order methods (nothing low about Simpson anyway!) are quite adequate for
nonsingular functions. As a matter of fact, Newton-Cotes formulas of degree
larger than 8 can lead to unusual results, since the weights or coefficients are
negative, beyond this point.

Two simple ways of improving the accuracy of the quadrature rules just
discussed is to use different sized panels (see9.4), or using unequally spaced
points. For example, we could use Gaussian Quadrature (see 9.3), which we
cover briefly next.

9.3 Gaussian Quadrature

In this strategy we want to choose the points in x so that evaluation of the
sum is in some sense optimal. This invariably requires us to use unequally
spaced points.

Choose x0, x1 · · ·xn such that the coefficients c1, c2 · · · cn.

||
∫ b

a

f(x)dx−
n∑

i=1

cif(xi)|| < ε,

where ε > 0 is the error we are willing to live with, in some appropriate
norm.

The nodes are xi ∈ [a, b] (are not necessarily equally-spaced). So we need to
fix the value of 2n quantities: the nodes xi and the weights ci.

Note that polynomials in P(2n−1)(x) contain at most 2n parameters. We’ll
use the “method of undetermined coefficients”, as is done in the following
example:

Example Let [a, b] = [−1, 1] and n = 2, then c1, c2, x1, x2 are chosen so that

∫ 1

−1

f(x)dx ≈ c1f(x1) + c2f(x2)

gives exact result whenever f(x) ∈ P2n−1 = P3
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i.e. f(x) = a0 + a1x+ a2x
2 + a3x

3.

Since

∫
(a0 + a1x + a2x

2 + a3x
3)dx = a0

∫
dx + a1

∫
xdx + a2

∫
x2dx +

a3

∫
x3dx, We can reduce the problem of choosing the ci xi to is equivalent

to choosing them when f(x) = 1, x, x2, x3 (a basis of P (4). These are the
necessary conditions:

c1 + c2 =

∫ 1

−1

1dx = 2 c1x1 + c2x2 =

∫ 1

−1

xdx = 0

c1x
2
1 + c2x

2
2 =

∫ 1

−1

x2dx =
2

3
c1x

3
1 + c2x

3
2 =

∫ 1

−1

x3dx = 0

Algebra shows that

c1 = 1, c2 = 1, x1,=

√
3

3
, x2 =

√
3

3

∴

∫ 1

−1

f(x)dx ≈ f

(
−
√
3

3

)
+ f

(√
3

3

)

which gives exact results when f ∈ P3
✷

More general case: Use orthogonal polynomials on the interval of interest:
use Legendre Polynomials Pn(x) on [−1, 1], Hermite on (0,∞), Fourier sine
and cosine for [0, 2π] with periodic functions, use Chebyshev polynomials on
[−1, 1], etc.

For example, suppose we use Legendre Polynomials. Properties of Legendre Polynomials

1. For each n, Pn is polynomial of degree n.

2.

∫ 1

−1

P (x)Pn(x)dx = 0 whenever P (x) is polynomial of degree less than

n.

The first few Legendre polynomials are:

P0(x) = 1 P1(x) = x P2 = x2 − 1

3
P3 = x3 − 3

5
x, P4 = x4 − 6

7
x2 +

3

35
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Note that the roots of these polynomials are distinct and lie in (−1, 1). Pn’s
have symmetry about the origin (they will be even or odd depending on the
degree n of the polynomial).

Theorem: Suppose that x1, x2, · · · , xn are the roots of the nth Legendre poly-
nomial Pn and that for each i = 1, 2, · · ·n

ci =

∫ 1

−1

n∏

j=1
j 6=i

(x− xj)

(xi − xj)
dx

If P is a polynomial of degree less than 2n then

∫ 1

−1

P (x)dx =

n∑

j=1

cjP (xj)

In this Gaussian Quadrature, the error is

En(f) =
f (2n)(ξ)

(2n)!

∫ 1

−1

P 2
n(x)dx

=
2

(2n+ 1)!

[
2n(h!)2

(2n)!

]2
f (2n)(ξ) − 1 < ξ < 1

Proof: Suppose R(x) is of degree less than n. Rewrite R(x) as an (n − 1)-
Lagrange polynomial with nodes at the roots of the Pn polynomial. This
representation is exact since the error term involves the nth derivative of R
and the nth derivative of R is 0. Hence,

∫ 1

−1

R(x)dx =

∫ 1

−1




n∑

i=1

n∏

j=1
j 6=i

x− xj

xi − xj
R(xi)


 dx(42)

=
n∑

i=1



∫ 1

−1

n∏

j=1
j 6=i

x− xj

xj − xj

dx


R(xi) =

n∑

i=1

ciR(xi)

This shows this is fine for polynomials of degree less than n.

If a polynomial P (x) of degree less then 2n is divided by the nth Legendre
polynomial Pn(x) we get

P (x) = Q(x)Pn(x) +R(x)
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Where Q(x) and R(x) are polynomials of degree < n.

Note that the first of the properties of the Legendre polynomials (orthogo-
nality) guarantees that

∫ 1

−1

Q(x)Pn(x)dx = 0.

Also, since xi is a root of Pn for each i = 1, 2, . . . , n = 0,

P (xi) = Q(xi)Pn(xi) +R(xi) = R(xi).

Finally, since R(x) is polynomial of degree less than n, it follows that

∫ 1

−1

R(x)dx =
n∑

i=1

ciR(xi)

so

∫ 1

−1

P (x)dx =

∫ 1

−1

[Q(x)Pn(x) +R(x)] dx

=

∫ 1

−1

R(x)dx =

n∑

i=1

ciR(xi) =

n∑

i=1

ciP (xi)

✷

To find the values of the roots of Pn consult Abramowitz and Stegun, Stroud
and Secrest or symbolic math programs like Maple or Mathematica for Gaus-
sian quadrature.

How do we use this quadrature rule on a finite interval [a, b]? A change
of variables converts the problem as defined over the interval [a, b] into one
defined over [−1, 1]: Let

t =
1

b− a
(2x− a− b) then [a, b]→ [−1, 1]

and

∫ b

a

f(x)dx =

∫ 1

−1

f

(
(b− a)t + b+ a

2

)
(b− a)

2
dt

✷
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Figure 46: Composite integration methods split the total integration domain
into smaller parts.

9.4 Composite Numerical Integration

Newton-Cotes formulas are unsuitable for large integration intervals. Instead
we use the idea of approximating the integrand with piece-wise polynomial
functions. We split up the integral domain into m equal parts, as in Figure
46.

∫ b

a

f(x)dx =

∫ a1

a0=a

f(x)dx+

∫ a2

a1

f(x)dx+

∫ a3

a2

f(x)dx+ · · ·+
∫ an=b

an−1

f(x)dx

with ai = a+ i(b− a)/m do each one separately. Each integral is then evalu-
ated using a Newton-Cotes formula such as the trapezoid rule or Simpson’s
rule. In the case of Simpson’s rule This involves evaluating f(x) at the mid-
point of each subinterval. The points where x must be evaluated for the
composite form of Simpson’s rule are xj = a + jh with h = (b − a)/n and
n = 2m. The resulting formula is:
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∫ b

a

f(x) dx =
h

6
( f(x0) +4f(x1) + 2f(x2) + 4f(x3) + 2f(x4) + · · ·

+4f(xn−1) + f(xn))−
h5

90

n/2−1∑

i=0

f (iv)(ξi)

Using the weighted mean value theorem it is straightforward to replace the
error term with a single term

∫ b

a

f(x) dx =
h

6
( f(x0) +4f(x1) + 2f(x2) + 4f(x3) + 2f(x4) + · · ·

+4f(xn−1) + f(xn))−
nh5

2 · 90f
(iv)(ξ)

and since h = (b− a)/n this can be written as

∫ b

a

f(x) dx =
h

6
( f(x0) +4f(x1) + 2f(x2) + 4f(x3) + 2f(x4) + · · ·

+4f(xn−1) + f(xn))−
h4(b− a)

180
f (iv)(ξ)(43)

Notice that in going from Simpson’s to composite Simpson’s rule, the error
went from being O(h5) to O(h4) Also for this rule n must be even.

A similar, but simpler argument (in this case m = n, and n can be any
positive number)

using the trapezoid rule yields

∫ b

a

f(x) dx =
h

2
( f(x0) +2f(x1) + 2f(x2) + 2f(x3) + 2f(x4) + · · ·

+2f(xn−1) + f(xn))−
h2(b− a)

12
f ′′(ξ)(44)

Example: Lets look at using the composite method for evaluating the integral

∫ 5

0

exdx.
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Figure 47: Plot of the function f(x) = ex over the interval of integration
along with the trapezoidal approximation for n = 2

We know that the actual value of this integral is e5 − e0 = 147.4132. First
we will use the trapezoidal rule and look at how the error decreases as we
increase the number of intervals, n, we use. Then we will use Simpson’s rule
for the integration and again look at how the error changes as we increase n.

Figure 47 shows the function plotted against the two trapezoids that the
trapezoidal rule would use to approximate the integral for n = 2. As you
can see this approximation overestimates the area under ex considerably.
The table below gives the error as 69.8. But the table also shows that as we
increase the number of intervals the error decreases significantly. We can also
see this in the log-log plot of n versus —Error— shown in figure 48. Because
this error line is a straight line there is a power law relating n to —Error—.
If we look at the table and compare the errors for n = 10, 100 and 1000 we
can see that as n increases by ten the error decreases by approximately 100.
Thus we can say that

Error(n) ≈ Cn2

for some constant C.
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Figure 48: Log-log plot showing the absolute error of the Trapezoidal rule
numerical integration of

∫ 5

0
exdx for different numbers of intevals n.

n Approximate Integral Absolute Error
1 373.5329 226.12
2 217.2227 69.810
5 159.4976 12.084
10 150.4715 3.0584
20 148.1801 0.76698
50 147.5360 0.12282
100 147.4439 3.0710× 10−02

200 147.4208 7.6777× 10−03

500 147.4144 1.2284× 10−03

1000 147.4135 3.0711× 10−04

We can also use Simpson’s rule to estimate the integral. Simpson’s Rule
requires an even number of intervals. Figure 49 shows f(x) = ex and the
polynomial used by the Simpson’s rule to approximate f(x) for n = 2. This
polynomial underestimates f(x) for the first interval and overestimates f(x)
for the second interval. The table of errors below shows that the error for
n = 2, Simpson’s Rule is much less than for the Trapezoidal Rule with the
same number of intervals. The table below shows the absolute error for
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Simpsons Rule for n=2 shown with f(x)=ex

Simpsons Rule, n=2
f(x)=ex          

Figure 49: Plot of the function f(x) = ex over the interval of integration
along with the Simpson’s Rule approximation for n = 2

n going from two to two thousand. Figure 50 also shows this graphically
on a log-log plot. Again we have a power law relationship between n and
—Error— but in this case it is

Error(n) ≈ Cn4

for some constant C. So not only is the error less for n = 2 but the rate that
the error decreases as n increases is considerably greater. For n = 1000 we
have an error of 5.1187× 10−10 compared with an error of 3.0711× 10−04 for
the trapezoidal rule.
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Figure 50: Log-log plot showing the absolute error of Simpson’s rule numer-
ical integration of

∫ 5

0
exdx for different numbers of intervals n.

n Approximate integral Absolute Error
2 165.1193 17.706
4 149.0933 1.6801
10 147.4629 4.9701× 10−02

20 147.4163 3.1754× 10−03

40 147.4134 1.9957× 10−04

100 147.4132 5.1170× 10−06

200 147.4132 3.1988× 10−07

400 147.4132 1.9994× 10−08

1000 147.4132 5.1187× 10−10

2000 147.4132 3.1974× 10−11

9.5 Some Adaptive Quadrature Methods

Not considered here, but the general techniques are:

I Method:
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use unequally-spaced panels, placing smaller panels where the function changes
more rapidly.

II Method: Use derivative information or any other information about the
integral to dictate where more grid points are to be placed for each panel.

III Method: Use more gridding where needed, and use paneling.

IV Method, Romberg Integration: Uses composite Trapezoidal combined with
Richardson extrapolation (see 10).

9.6 Monte Carlo Method for Integrals

We present here the simplest application of Monte Carlo techniques. We will
use Monte Carlo to approximate the integral

∫ b

a

f ′(x′) dx′.

Without loss of generality, we will be further assuming that the function
f ′(x′) can be transformed to 0 ≤ f(x) ≤ 1, and that the limits can be
mapped to the interval 0 and 1, respectively, so that the task is now converted
to approximating the integral

I ≡
∫ 1

0

f(x) dx.

Suppose we choose N pairs of points (xi, yi) with uniform distribution (see
Figure 51) and define

zi =

[
0 yi > f(xi)
1 yi ≤ f(xi).

]
.

See Figure 52. Then, if n =
∑

i zi, we have n/N ≈ I, or more precisely,

I =
n

N
+O(1/

√
N).
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Figure 52: The value of zi is 0 for yi > f(xi), and 1 if in the shaded region.
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Can also consider I as the mean value of the probability density function f(ξ)
with ξ from a uniformly distributed density function. Then, the estimate of
the mean value is

I ≈ 1

N

N∑

i=1

f(ξi).

The basic theorem for Monte Carlo estimates the integral in Rn space of f
as

∫

V

f(y1, y2, . . . , yn)dy1dy2 . . . dyn ≈ V < f > ±
√

< f 2 > − < f >2

N
,(45)

where

< f > ≡ 1

N

N∑

i=1

f(yi)

< f 2 > ≡ 1

N

N∑

i=1

f 2(yi)

so we recognize the last term on the right hand side of (45) as the volume V
times the standard deviation.

This is not a rigorous bound and it assumes that the error is Gaussian dis-
tributed. In fact, it also needs to be pointed out that the the approximation
also depends on the quality of the random number generator and the actual
creation of good and fast random number generators is a matter of current
research.

The important thing about (45) is that it says that the integral converges,
but very slowly: O(1/

√
N), where N is the number of (xi, yi) pairs. So it is

typically impractical, i.e. computationally expensive for integrals in one or
two dimensions. However, it is competitive for higher dimensional integrals.
In particular, there are many applications in estimation theory in which the
integral is a Feynman path integral, which is an integral over ALL possible
paths.

10 RICHARDSON EXTRAPOLATION

Used to generate high accuracy by using low-order formulas.
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The idea is to use low order formulas for which the expression of the trun-
cation error is well known. Then, at the expense of higher computation, one
can derive higher order accuracy from the low order formulas.

Can be applied when the approximation generates a predictable error that
depends on a parameter, such as step size h.

To illustrate the procedure assume we have an approximation N(h) to some
quantity M . This approximation has an order h truncation error. In fact we
know what the explicit expression is for the first few terms in the truncation
error.

M = N(h) +K1h +K2h
2 +K3h

3

︸ ︷︷ ︸ · · ·
K’s are
known constants.

(46)

truncation error5 Here N(h) is an approximation to M, to O(h).

Assume h > 0 and can be arbitrarily chosen such that h → 0 a better
approximation is obtained.

Aim: Use extrapolation to remove O(h) error to obtain higher order approx-
imation.

Consider (46) when
h

2

M = N

(
h

2

)
+K1

h

2
+K2

h2

4
+K3

h3

8
+ · · ·(47)

Multiply (47) by 2 and subtract (46) to obtain

M =
[
N

(
h

2

)
+

(
N

(
h

2

)
−N(h)

)]
+K2

(
h2

2
− h2

)
+K3

(
h3

4
− h3

)
+ · · ·

eliminates the K1 term.

let N1(h) ≡ N(h) and N2(h) = N1

(
h

2

)
+
[
N1

(
h

2

)
−N1(h)

]
.

So, to O (h2)

M = N2(h)−
K2

2
h2 − 3K3

4
h3 + · · ·(48)

5ϕ in Kincaid and Chenney.
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Now, replace h by
h

2

M = N2

(
h

2

)
− K2

8
h2 − 3K3

32
h3 · · ·(49)

Subtract 4 times (49) minus (48):

3M = 4N2

(
h

2

)
−N2(h) +

3K3

4

(
−h

3

2
+ h3

)
+ · · ·

So M =

[
N2

(
h

2

)
+

N2(h/2)−N2(h)

3

]
+

K3

8
h3 · · ·

No we have O(h3)approximation:

let N3(h) ≡ N2

(
h

2

)
+

N2(h/2)−N2(h)

3

M = N3(h) +
K3

8
h3 + · · ·

Process is continued by constructing the O(h4) approximation

N4(h) = N3

(
h

2

)
+

N3(h/2)−N3(h)

7

Then O(h5) is

N5(h) = N4

(
h

2

)
+

N4(h/2)−N4(h)

15
and so on .

Thus, if M = N(h) +
m−1∑

j=1

Kjh
j +O(hm)

then for each j = 2, 3, . . . , m we have O(hj) approximation

Nj(h) = Nj−1

(
h

2

)
+

Nj−1((h/2)−Nj−1(h)

2j−1 − 1

When can it be used?

When truncation error is the form

m−1∑

j=1

Kjhαj +O(hα
m)α1 < α2 · · · < αm.

note that the K ′s are known.
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Example

f ′(x0) =
1

2h
[f(x0 + h)− f(x0 − h)]− h2

6
f ′′′(x0)−

h4

120
f v(x0) · · ·

formula contains only even powers of h.

O(h2) : N1(h) ≡ N(h) =
1

2h
[f(x0 + h)− f(x0 − h)]

the O(h2j)

Nj(h) = Nj−1

(
h

2

)
+

Nj−1(h/2)−Nj−1(h)

4j−1 − 1
,

տ since only even powers

where j = 2, 3, 4 · · ·

Since

(
h

2

)2

=
h2

4
the multipliers used to eliminate powers of h2

are not powers of 2 but of 4.

✷

Discussion: higher-order approximations are derived with minimal compu-
tational cost. However, as k increases in N1(h/2

k) we get more round-off
error. Furthermore, it’ll increase the possibility of instabilities in numerical
differentiation.

Exercise Use technique to derive 3,−5,−9 point formulas for derivatives,
using the two-point formulas.

✷

11 LINEAR ALGEBRA REVIEW

11.1 Vector Norms

Need a notion of how “close” is
{
x(k)

}∞
k=1

to some x.
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definition: Euclidean length |x| ≡
√

(x1)2 + (x2)2 · · · (xn)2, for x =




x1

x2

:
xn




Let Rn ≡ set all n-dimensional vectors with real components

Rn =




x|x =




x1

x2

:
xn


 , x1, x2, . . . , xn real





A norm in Rn is a real-valued function || · || defined on Rn satisfying

||x|| ≥ 0 , and ||x|| = 0 if and only if x = 0

||αx|| = |α| ||x|| ∀α scalars and x vectors ∈ Rn.

||x+ y|| ≤ ||x||+ ||y|| ∀x and y ∈ Rn

Note: A useful variation ||x− y|| ≥ ||x|| − ||y||
Three lp − norms for Rn, p = 1, 2,∞, are :

||x||1 = |x1|+ |x2|+ . . . |xn|
||x||2 =

√
(x1)2 + (x2)2 · · · (xn)2

||x||∞ = max {|x1|, |x2|, · · · |xn|}

✷

Example Take

x = [1− 2− 2]T then ||x||1 = 5 ||x||2 = 3 ✷

and ||x||∞ = 2

Remark:

With these norms, the concept of relative and absolute error are thus defined

||e||Ap = ||x− x̂||p and ||e||Rp =
||x− x̂||p
||x||p

p = 1, 2,∞.
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Example Consider subspace {x : x ∈ R2, ||x|| ≤ 1}

The l2-norm ||x||2 ≤ 1 defines a unit ball that in the 2-d plane is a circle. The
l1-norm ||x||1 ≤ 1 defines a “unit ball” that in the 2-d plane is a rhombus.
The l∞-norm ||x||∞ ≤ 1 defines a “unit ball” that in the 2-d plane is a square.
✷

In general: ||x||1 ≥ ||x||2 ≥ ||x||∞
Also ||x||1 ≤

√
n||x||2 , ||x||2 ≤

√
n||x||∞ and ||x||,≤ n||x||∞

11.1.1 Matrix Norms (Undergraduate Students)

let Mn denote (n× n) matrices, 0 is the n×n zero matrix. Then the matrix
norm for Mn is a real-valued function || · || which is defined on Mn if A ∈Mn

and B ∈Mn

||A|| ≥ 0 and ||A|| = 0 if and only if A = 0

||αA|| = |α| ||A||for any scalar α

||A+B|| ≤ ||A||+ ||B||
||AB|| ≤ ||A|| ||B||

The latter two are the triangle inequalities for both add and multiply.

There are many ways to define matrix norms. Concentrate on ones that are
compatible with the vector norms

||A||1 = max
1≤j≤n

[
n∑

i=1

|aij|
]

max column sum

||A||a = max
1≤i≤n

[
n∑

j=1

|aij|
]

max row sum

||A||E ≡
√∑

i

∑

j

(aij)2 Frobenius Norm

these are compatible, since

||Ax||1 ≤ ||A||1||x||1 , ||Ax||∞ ≤ ||A||∞||x||∞ , ||Ax||2 ≤ ||A||E||x||2
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Example Suppose Ax = b xc is approximation of xt the exact solution.

let r = Axc − b be residual vector





then r = Axc − b = Axc − Axt or
xc − xt = A−1r

||xc − xt||1 = ||A−1r||1 ≤ ||A−1||, ||r||1
(50)

✷

11.1.2 Matrix Norms (Graduate Students)

We’ll consider finite-dimensional spaces of reals and assume all of this is a
review.

Let V = Rn, let || · || be a function taking V → R which satisfies the following
“norm axioms.”

(a) ||x|| ≥ 0, where ||x|| = 0 when x = 0.

(b) ||αx|| = |α| ||x|| , here α ∈ R

(c) ||x+ y|| ≤ ||x||+ ||y|| “Triangle Inequality”

for x ∈ V and y ∈ V .

|| · || is known as a “norm” and yields the “length” of x, say, in the space V
in which x is an element. It is not unique:

For x ∈ V

||x||2 ≡
√

x2
1 + x2

2, · · · , x2
n

||x||1 ≡ |x1|+ |x2|+, · · · , |xn|
||x||p ≡ [|x1|p + |x2|p + · · ·+ |xn|p]

1
p

||x||max ≡ ||x||∞ = max
1≤j≤n

[|xj|]

The last one comes from ||x||p → ||x||max as p→∞.
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Linear Transformations:

The general linear transformation from Rn → Rm is of the form



x1

x2
...
xn


→




A11x1 +A12x2 +A13x3 + · · · +Ainxn

A21x1 + · · ·
:
Am1x1 +Am2x2 +Am3x3 + · · · Amnxn


 =




y1
y2
...
ym




or
Ax = y.

A is an m× n matrix with entries Ai,j , (i = 1, 2 . . .m and j = 1, 2, · · · , n).

The set of all m × n matrices that are vector spaces under element-wise
addition and scalar multiplication that are members of Rm×n space.

Matrix Multiplication: if A ∈ Rm×nand B ∈ Rn×p then AB is an m × p
matrix with entries

(AB)ij =
n∑

k=1

AikBkj

Matrix Transpose AT : (AT )ij = Aji

Trace of Square Matrix: sum of diagonal elements.

tr(A) =

n∑

j=1

Ajj , here A ∈ Rn×n.

Can define norms on Rm×n just as we did in Rn. For example

||A||F =

√√√√
n∑

j=1

m∑

k=1

A2
ij “Frobenious” norm, which can be written as

||A||F =
√

tr(ATA)

The problem with || · ||F is that it has “forgotten” the relation between linear
transformations and matrices. To build this back in we define the “induced

or associated” matrix norm on Rm×n by
||Ax||β
||x||α

with x 6= 0, and take the

largest value.
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It turns out that the quotient is always bounded ⇒ supremum exists and is
actually achieved:

||A||α,p ≡ max
x 6=0

||Ax||β
||x||α

is the induced norm.

Remark: In infinitely-dimensional spaces (e.g. Banach), the associated oper-
ator norm is

sup
x 6=0

||Ax||β
||x||α

, even though supremum is not necessarily attained.

Where x an element of the Banach space, A is an operator acting in the
Banach space. ✷

Need to check that norm axioms apply. The first two follow from the defini-
tion. Check triangle inequality:

Suppose A,B ∈ Rm×n

||A+B||α,β ≡ max
x 6=0

||(A+B)x||β
||x||α

= max
x 6=0

||Ax+Bx||β
||x||α

≤ max
x 6=0

||Ax||β + ||Bx||β
||x||α

≤ max
x 6=0

||Ax||β
||x|| α

+max
x 6=0

||Bx||β
||x||α

∴

||A+B||α,β ≤ ||A||α,β + ||B||α,β

✷

Two other vital properties which prove useful:

||Ax||β ≤ ||A||α,β||x||α
||AB||α,γ ≤ ||A||α,β||B||β,γ
if B ∈ Rn×p , || · ||γ on RP .

✷

So the vector norms || · ||p, for u ∈ Rn:

||u||1 =
n∑

i=1

|ui|
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||u||2 =
(

n∑

i=1

|ui|2
) 1

2

||u||p =
(

n∑

i=1

||ui|p
) 1

p

, 1 ≤ p <∞

||u||∞ = max
i=1,n

{|ui|}

Remark: To show that || · ||p → || · ||∞ as p→∞ use L’Hopital’s Rule.

Associated Matrix Norms of A ∈ Rn×n

||A||1 = max
j=1,n

{
n∑

i=1

|aij |
}

||A||2 = max
{√

λ > 0, where λ ∈ σ(ATA)
}

where σ(·) is the eigenvalue spectrum with components λ.

||A||∞ = max
i=1,n

{
n∑

j=1

|aij|
}

Remark: To prove ||A||2 is given in terms of spectrum, square A and use
Lagrange multipliers and the definition of the associated norm.

✷

Let A ∈ Rn×m , b ∈ Rn

When does Au = b have a unique solution u ∈ Rn?

Theorem: The following statements are equivalent:

∃ ! u such that Au = b⇐⇒ det(A) 6= 0

⇐⇒ Au = 0 has solution u = 0

⇐⇒ A is invertible

if || · || is a vector norm in Rn then

⇐⇒ ∃α > 0 such that ||Au|| ≥ α||u|| ∀u

moreover ||A−1|| ≤ 1

α
where

|| · || is the associated vector norm.

188



Proof

||A−1|| = max
w 6=0

{ ||A−1w||
||w|| |w ∈ Rn

}

= max
w 6=0

{ ||u||
||Au|| |u ∈ Rn

}
≤ ||u||

α||u|| =
1

α

✷

A very useful Theorem:

Theorem: If || · || is a matrix norm and B ∈ Rn×n with ||B|| < 1, then I +B
is invertible with

||(I +B)−1|| ≤ 1

1− ||B||
Proof:

||(I +B)u|| and want to bound from below:

||(I +B)u|| ≥ α||u||.

We write (I +B)u−Bu = u

Then triangle inequality:

||u|| ≤ ||(I +B)u||+ ||Bu||
||(I +B)u|| ≥ ||u|| − ||Bu||

≥ ||u|| − ||B|| ||u||
≥ (1− ||B||)||u||
≥ α||u||

✷

Remark: A very nice characteristic of the Frobenius or Euclidean norm is
that they have inner products.

Take u ∈ Rn , A ∈ Rn×n, then

||u||22 = uTu

For example:
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if ∃α > 0 with uTAu ≥ αuTu ∀u then A is invertible with

||A−1|| ≤ 1

α
α||u||22 ≤ uTAu

α||u||22 ≤ uTAu ≤ ||u||2||Au||2 ⇒ α||u||2 ≤ ||Au||2

✷

Note: if A = AT and satisfies uTAu ≥ α||u||22 α > 0, ∀u, then A is called
“symmetric positive definite”. In particular, if A and B are similar

tr(A) = tr(B) and det(A) = det(B).

✷

11.2 Eigenvalues and Eigenvectors

definition: If A is square matrix

p(λ) ≡ det(A− λI) “characteristic polynomial of A′′

if λ is zero of p ⇒ (A − λI)x = 0 has nontrivial solution. These zeros are
eigenvalues of A, x are eigenvectors

if λ eigenvalue ⇒ Ax = λx so A takes x into a scalar multiple of itself.
Suppose λ real, then (a)λ > 1 scales the vector up. (b) 1 > λ > 0 the vector
scales down, (c) λ < −1 the vector changes direction and gets scaled.

definition: The set of all eigenvalues λ of A is denoted as

σ(A) = {λi}ri=1 r ≤ n.

definition: The “spectral radius” of A is

ρσ(A) ≡ max
λ∈σ(A)

|λ|.

Theorem: A ∈Mn
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(i)
[
ρ(ATA)

] 1
2 = ||A||2 → ||A||2 ≡ max||x||2=1 ||Ax||2

(ii) ρ(A) ≤ ||A|| || · || induced norm.

example

A =




1 1 0
1 2 1
−1 1 2


AT =




1 1 −1
1 2 1
0 1 2




ATA =




3 2 −1
2 6 4
−1 4 5




det(ATA− λI) = det




3− λ 2 −1
2 6− λ 4
−1 4 5− λ




= −λ3 + 14λ2 − 42λ

λ = 0, λ = 7±
√
7

||A||2 =
√

ρ(ATA) =

√
max(0, 7−

√
7), 7 +

√
7) ≈ 3.106

✷

We’ll need this later:

definition: A ∈Mn convergent if

limk→∞(Ak)ij = 0 for each i = 1, 2, . . . , n,
j = 1, 2, . . . , n.

Example

A =

[
1
2

0
1
4

1
2

]
⇒ A2 =

[
1
4

0
1
4

1
4

]
, A3 =

[
1
8

0
3
18

1
8

]
A4 =

[
1
16

0
1
8

1
16

]

Ak =

[ (
1
2

)k
0

k
2k+1 (1

2
)k

]
Since





lim
k→∞

(
1

2

)k

= 0

lim
k→∞

k

2k+1
= 0
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A is convergent. Note ρ(A) = 1
2
, since

1

2
is only eigenvalue of A.

✷

Theorem: The following statements are equivalent

(i) A is convergent

(ii) lim
n→∞

||An|| = 0 for any induced norm.

(iii) lim
n→∞

||An|| = 0 ∀ induced norms.

(iv) ρ(A) < 1

(v) lim
n→∞

Anx = 0 ∀x

✷

11.2.1 Matrix Norm, spectral radius and Condition Number

The notion of condition number is defined in terms of the matrix norm(s),
so clearly the two notions are related. The matrix norm measures the the
maximum amount by which changes in a vector x are “magnified” in the
calculation of Ax, in fact, that is the definition of the matrix norm of A.
The condition number κ(A), is the product of the norms of A and A−1.
It measures the maximum amount by which the relative error in x can be
magnified into a relative error in Ax. The spectral radius is used in the
calculation of the matrix 2-norm, but in general, it is not the same as the
matrix norm.

Lets see how the matrix 2-norm is related to the spectral radius. The defini-
tion of the 2-norm of A is

||A||2 = max||x||2=1||Ax||2
. We can write the square of the 2-norm in terms of the dot product, ||Ax||2 =
Ax · Ax = (Ax)TAx = xTATAx. Thus

||A||22 = max||x||2=1x
T (ATA)x.

192



The matrix B = ATA is a symmetric matrix, and we can take advantage
of the fact that for any symmetric matrix, there is an orthonormal basis of
eigenvectors (with real eigenvalues), i.e. a basis consisting of unit length
eigenvectors that are pairwise perpendicular. Let that basis be the vectors
bi, i = 1, . . . , n. Let λi be the corresponding eigenvalues so that Bbi =
λibi. Note that in this case where B = ATA, the λi must be non-negative
real numbers, since we can write bTi Bbi = bTi λibi = λi and also bTi Bbi =
bTi A

TAbi = (Abi)
TAbi = ||Abi||22 ≥ 0. Using this basis, we can compute

the square of the 2-norm of A. The set of unit vectors x|||x||2 = 1 can also
be written as x|x =

∑n
i=1 yibi, with

∑n
i=1 y

2
i = 1 This is because the bi are

orthonormal. When we take the dot product of x with itself, all of the cross
terms are zero, and, since the dot product of bi with itself is 1, the sum ends
up being the sum of the squares of the coefficients. In the same way, we can
write out xT (ATA)x = xTBx =

∑n
i=1 λiy

2
i .

We can now rewrite the 2-norm squared of A as

||A|||22 = maxyi|
∑

y2i =1

n∑

i=1

λiy
2
i .

Thus ||A||22 = max(λi) = max(|λi|) = ρ(B) = ρ(ATA), and

||A||2 =
√

ρ(ATA)

.

In the special case that A = AT is symmetric, we see that the eigenvalues
of B = ATA = A2 are the squares of the eigenvalues of A, so

√
ρ(ATA) =√

ρ(A)2 = ρ(A), and thus we get the relation

For symmetric matrices||A||2 = ρ(A).

Example This last relation is definitely false for general matrices A. For
example, consider

A =

(
1 1000
0 1

)

, The eigenvalues of A are both 1, so ρ(A) = 1, however,

ATA =

(
1 1000

1000 1000001

)
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has eigenvalues of approximately 1000001.999999 and 0.000000999998, thus
the spectral radius is 1000001.999999, and the 2-norm of A is approximately
1000.00099999. This is an important example to show how the matrix norm
differs from the spectral radius. Geometrically, A is a skewing transforma-
tion, it doesn’t increase or decrease area (its determinant is 1), but it deforms
squares into very stretched out parallelograms, and circles into long thin el-
lipses.

The condition number (in the 2-norm) for the A of this example is easy to
compute as well, since

A−1 =

(
1 −1000
0 1

)
,

||A−1||2 = ||A||2, and the condition number is ||A||22 ≈ 1000001.999999

For the other norms, the relationship between spectral radius and matrix
norm is not as explicit, but we always have the inequality

ρ(A) ≤ ||A||

for any matrix norm. This follows by taking a unit eigenvector v of A with
eigenvalue λ and using the definition of a matrix norm.

||A|| = maxx|||x||=1||Ax|| ≥ ||Av|| = ||λv|| = |lambda|||v|| = |lambda|

Thus the matrix norm is always larger than the maximum of the absolute
values of the eigenvalues, i.e. the spectral radius. The careful reader will
notice that there is the possibility that λ and v may be complex valued. If
we are working with real spaces, this seems to be a problem. The easiest
way to deal with this, is to embed the real vector space Rn in the complex
spaceCn, and check that all definitions etc. still work. They do.

In thinking about matrix norms it is often useful to have a geometric picture.
The matrix norm is the maximum of the norm of ||Ax|| when ||x|| = 1. We
can also (equally well) define it as the maximum of ||Ax|| when ||x|| ≤ 1.
Geometrically, ||x|| ≤ 1|| is a unit disk if we are working with the ℓ2 norm.
The matrix 2-norm can be defined as the radius of the smallest circle that
contains the image of the unit disk under the map A.

Similarly, for the ℓ∞ norm, ||x|| ≤ 1 is a square, S1 centered at 0 with sides
parallel to the axes of length 2, and the matrix ∞-norm is the half the side
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length of the smallest square centered at 0 with sides parallel to the axes
that contains the image of S1.

The 2-norm and ∞-norm are illustrated in the figure below for the matrix

A =

(
1 4
0 1

)
.

✷

11.3 Linear Systems (Continued) and Canonical Forms

Canonical Forms

Schur Normal Form: A ∈ Cn×m ⇒ ∃ a unitary matrix U such that

T ≡ U †AU

is upper triangular. Note: the † indicates conjugate transpose.

Since T is upper triangular and U † = U−1, the characteristic equation of A
is

fA(λ) = fT (λ) = (λ− t11)(λ− t22) · · · (t− tm)

∴ the eigenvalues of A are diagonal elements of T ✷

Theorem (Principle Axes): Let A be Hermitian, A ∈ Cn×m. Hermitian

means that A† = A. Then A has n REAL eigenvalues λ1, λ2, . . . , λn not
necessarily distinct, and n eigenvectors u(1), u(2), . . . , u(n) that form an or-
thonormal basis of Cn. If A is real ⇒ u(i) are real and form basis of Rn.
Finally, ∃ a unitary matrix U for which

U+AU = D = diag [λ1, λ2, . . . , λn]

is a diagonal matrix with diagonal elements λ1, λ2, . . . , λn. If A is real ⇒ U
can be taken as orthogonal.

Jordan Canonical Form:
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definition: “Jordan block” is an n× n matrix

Jn(λ) =




λ 1 0 · · · 0
0 λ 1 0
: 0 λ 1
:

:
. . . 1

0 · · · 0 λ




n ≥ 1

where Jn(λ) has the single eigenvalue λ of multiplicity n and geometric mul-
tiplicity n.

Theorem (Jordan Canonical Form:) Let A be n×n matrix⇒ ∃ a nonsingular
matrix P for which

P−1AP =




Jn1(λ1) 0
Jn2(λ2)

Jn3(λ3)
. . .

0 Jnr(λr)




The eigenvalues λ1, λ2, . . . , λr needn’t be distinct. For A Hermitian the Prin-
cipal Axes Theorem implies we must have n1 = n2 = n3 = · · · = nr = 1 for
in that case the sum of hte geometric multiplicities must be n the order of
matrix A.

✷

Remark:

P−1AP = D +N

D = diag [λ1, . . . , λr]

with each λi appearing ni times on the diagonal of D. The matrix N has all
zero entries except for possible ones on the superdiagonal. It is a nilpotent
matrix and it satisfies

Nn = 0

✷
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Theorem: A is n× n matrix. Then for any operator norm

rσ(A) ≤ ||A||

Moreover, if ε > 0 is given → there’s an operator norm denoted || · ||ε for
which

||A||ε ≤ rσ(A) + ε

✷

Corollary: A as above. rσ(A) < 1 if and only if ||A|| < 1 for some operator
norm.

Theorem A as above. Then Am converges to the zero matrix as m → ∞ if
and only if rσ(A) < 1 ✷

Theorem (Geometric Series): A as above. If rσ(A) < 1 ⇒ (I − A)−1 exists
and can be expressed as a convergent series

(I − A)−1 = I + A+ A2 + · · ·+ Am + · · ·(51)

Conversely, if (51) is convergent ⇒ rσ(A) < 1.

✷

Theorem: A as above. If ||A|| < 1⇒ (I −A)−1 exists and has the expansion
(51). Moreover

||(I − A)−1|| ≤ 1

1− ||A||
✷

Theorem: Let A and B be n×nmatrices. Assume A nonsingular and suppose
that

||A− B|| < 1

||A−1||
then B is also nonsingular

||B−1|| ≤ ||A1||
1− ||A−1|| ||A− B||

and

||A−1 −B−1|| ≤ ||A−1||2 ||A− B||
1− ||A−1|| ||A−B||

✷
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11.4 Condition Number and Error Estimates:

Want to know how good a computed solution is

Theorem: Suppose A ∈ Mn nonsingular and xc approx to xt, the exact
solution to Ax = b, b 6= 0. Then any compatible nroms (matrix and vector)
give

1

||A|| ||A−1||
||Axc −−b||
||b|| ≤ ||xc − xt||

||xt||
≤ ||A|| ||A−1||︸ ︷︷ ︸

k(A)

||Axc − b||
||b||︸ ︷︷ ︸

ε

(52)

Proof: Use (50)

✷

definition: Condition Number k(A) = ||A|| ||A−1||

Then

(52) ε
k(A)
≤ ||xc−xz||

||xz|| ≤ εk(A)

k(A) ≥ 1 and the closer k(A)is to 1 the more accurate ε becomes as a
measurement of the error.

if k(A)≫ 1⇒ relative error may not be small even if ε is small.

When k(A) ≫ 1 it indicates Ax = b is ill-conditioned, i.e. small changes
input data produce large changes in output x. Ultimate ill-conditioning:
when A is singular (in this case there are infinitely many vectors u 6= 0 such
that Au = 0, and hence xt and xt + u are both solutions of Ax = b even
when A and B undergo no change at all.

One can show that the connection between size of k(A) and how close A is
to being singular, if A is nonsingular

1

k(A)
= min

{ ||A− B||
||A|| : B is singular

}

∴ A can be approx by singular matrix if and only if k(A)is large.
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Remark: So we want xc and an estimate of k(A) to see how go solution is.
Don’t want to find A−1. Could estimate as follows:

for x 6= 0 x = A−1Ax
||x|| ≤ ||A−1|| ||Ax|| ∴
||A−1|| ≥ ||x||

||Ax||

so estimate ||A−1|| by making ||x||/||Ax|| as large as possible which vector x
to choose? depends on a problem

✷

11.5 EIGENVALUES AND THE CANONICAL FORMS
OF MATRICES (Graduate Students)

Mostly taken from Atkinson’s Numerical Analysis Book.

The statement
Ax = λx

with x 6= 0

λ complex or real, x ∈ Cn, A ∈ Cn×n is an eigenvalue problem.

λ ≡ eigenvalues, x ≡ eigenvectors.

λ is an eigenvalue of A if and only if

det(A− λI) = 0

(here I is the n× n identity matrix.)

Let f ≡ det(A− λI), a polynomial of nth degree. f = 0 is the characteristic
equation. This equation in λ has n-roots not necessarily all unique. These
roots are the eigenvalues.

definition: Let A and B be square matrices of same order. A is “similar” to
B if ∃ matrix P , nonsingular, for which

B = P−1AP
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by extension, notice that this implies

A = Q−1BQ where Q = P−1.

P is called the “change of basis matrix.”

Some properties of similar matrices:

a) If A and B are similar then fA(λ) = fB(λ)

b) If A and B are similar then A and B have the same eigenvalues.

c) Since f(λ) is invariant under similarity transformations of A the coef-
ficients of f(λ) are also invariant under such similarity.

11.5.1 Location of Eigenvalues:

A is n× n matrix A = [aij ] i, j = 1, . . . , n.

Let

ri =

n∑

j=1
j 6=i

|aij| i = 1, 2, . . . , n.(53)

Let Zi denote the circle in the complex plane with center aii and radius ri:

Zi = {z ∈ C such that |z − aii| ≤ ri}(54)

Theorem (Gerschgorin): A as above. Let λ be an eigenvalue of A then λ
belongs to one of the circles Zi. Moreover if m of the circles form a connected
set S, disjoint from the remaining n−m circles, then S contains exactly m
of the eigenvalues of A, counted according to their multiplicity as roots of
the characteristic polynomial of A.

Since A and AT have the same eigenvalues and characteristic polynomial ⇒
these results are also valid if summation within the column rather than in
the row is used defining the radii in (53)

Proof: See Figure 53.
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Z_2

Z_1

Z_3

a_33 a_11r_1

r_3

r_2

a_22

Figure 53: Example of Gerschgorin’s circle theorem. Solid circles given by
(54). According to theorem there should be 1 eigenvalue in Z3 and two in
the union of Z1 and Z2.
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Let λ be an eigenvalue of A and x its corresponding eigenvector. Let k be
such that

|xk| = max
1≤i≤n

|xi| = ||x||∞

then from Ax = λx, the kth component

n∑

j=1

akjxj = λxk

(λ− akk)xk =
n∑

j=1
k 6=j

akjxj

|λ− akk||xk| ≤
n∑

j=1
k 6=j

|ajk||xj| ≤ rk||x||∞

Canceling ||x||∞ proves first part of theorem.

Let D = diag [a11, a22, . . . , ann] and

E = A−D

for 0 ≤ ε ≤ 1 let
A(ε) = D + εE(55)

and λi(ε) be the eigenvalues of A(ε). Note A(1) = A. Here the eigenvalues
are roots of

fε(λ) ≡ det[A(ε)− λI]

since the coefficients of fε(λ) are functions of ε and since the roots of any
polynomial are continuous functions of its coefficients ⇒ λ(ε) are continuous
functions of ε. As ε varies, each λi(ε) changes in complex plane, marking a
path from λi(0) to λi(1). From first part of the theorem

Zi(ε) = {z ∈ C such that |z − aii| ≤ εri} i = 1, 2, . . . , n.

with ri defined as before. Examples of these circles are in figure. The circles
decrease as ε goes from 1 to 0 and λ(ε) remain within them. When ε = 0
the eigenvalues are

λi(0) = aii.

202



By considering the path λi(ε), 0 ≤ ε ≤ 1, it must remain in the component
containing Zi(1) in which it begins at ε = 0. Thus if m of the circles Zi(1)
form a connected set S ⇒ S must contain exactly m eigenvalues λi(1), as it
contains the m eigenvalues λi(0).

✷

Example) Consider

A =




4 1 0
1 0 −1
1 1 −4




Theorem shows eigenvalues must be contained in the circles

|λ− 4| ≤ 1 |λ| ≤ 2 |λ+ 4| ≤ 2(56)

Since first circle is disjoint from remaining ones, there must be a single root
in the circle. Since the coefficients of

f(λ) = det[A− λI]

are real then eigenvalues are complex conjugate pairs. This with (56) implies
that there’s a real eigenvalue in [3, 5]. The last 2 circles touch at single point
(−2, 0). Using same reasoning, the eigenvalues in these 2 circles must be
real. By using (55) of A(ε), ε < 1, there’s 1 eigenvalue on [−6,−2] and 1 in
[−2, 2]. Since it’s easily checked that λ = −2 is not an eigenvalue ⇒ A has
a real eigenvalue in each of the intervals

[−6,−2), (−2, 2], [3, 5]

the true eigenvalues are −3.76010,−.442931, 420303. ✷

Example) Consider the n× n matrix
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A =




4 1 0 · · · 0
1 4 1 0 0
0 1 4 1 0
0 0 1 4 1

0 1 4 1
0 0 1 4 1

0 0 1 4 1

. . .

0 0 1 4 1
0 · · · 0 1 4




Since A is symmetric then all eigenvalues real. ri are all 1 or 2 and all centers
aii = 4. Thus all eigenvalues lie in interval [2, 6]. Since eigenvalues of A−1

are reciprocals of A then
1

6
≤ µ ≤ 1

2

is eigenvalue range for A−1. Thus

||A−1||2 = ρσ(A
−1) ≤ 1

2
independent of n!

✷

11.5.2 Bounds for Perturbed Eigenvalues

We perturbA. What effect does this cause to its eigenvalues? This is useful in
studying the linear stability of finite dimensional operator/matrix problems.

Assume the Jordan canonical form of A is diagonal:

P−1AP = diag[λ1, · · · , λn] = D(57)

P nonsingular. The columns of P will be eigenvectors of A corresponding to
eigenvalues λ1, . . . , λn. Matrices for which (57) holds occur often in practice
. . . but this is a special case.

Note: For diagonal matrices G = diag [d1, d2, d3, . . . , dn]

||G|| = max
1≤1≤n

|di|.
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Theorem (Bauer-Fike) Let A be as above. Let A +E be a perturbation of A
and λ an eigenvalue of A + E ⇒

min
1≤i≤n

|λ− λi| ≤ ||P || ||P−1|| ||E||(58)

✷

Corollary: If A is Hermitian and A+ C a perturbation of A⇒
min
i≤i≤n

|λ− λi| ≤ ||E||2

for any eigenvalue λ of A+ E. ✷

Remark: above says that small perturbation of Hermitian matrices lead to
equally small perturbations of eigenvalues.

Theorem (Wielandt-Hoffman:) Let A and E be real symmetric n×nmatrices.
Let Â = A + E. Let λi and λ̂i i = 1, 2, . . . , n be eigenvalues of A and Â,
arranged in increasing order. Then

[
n∑

j=1

(λj − λ̂j)
2

] 1
2

≤ F (E)(59)

where F (E) = [
n∑

i,j=1

|aij |2]1/2, the Frobenius norm.

✷

A computable error bound for symmetric matrices

A symmetric n×n. Let x and λ be approximated computed eigenvector and
eigenvalue. Then let residual

η = Ax− λx

Since A symmetric ⇒ ∃ a unitary matrix U

U †AU = diag[λ1, λ2, . . . , λn] ≡ D

then min
1≤i≤n

|λ− λi| ≤
||η||2
||x||2

Exercise Show this.

✷
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11.5.3 Eigenvalues of Symmetric Tri-Diagonal Matrix

Tridiagonal matrices are very common and it is often necessary to find its
eigenvalues. This can be accomplished analytically.

Let T be n × n symmetric tridiagonal matrix. To find fn = det(T − λI)
introduce the sequence

fk(λ) =




α1 − λ β1 0 · · · 0
β1 α2 − λ β2 :

0
. . .

: :
βk−1

0 · · · 0 βk−1 αk − λ




for k = 1, 2, . . . n. Note
f0(λ) = 1.

Then
fk(λ) = (αk − λ)fk−1(λ)− β2

k−1fk−2(λ)

for 2 ≤ k ≤ n.

12 NUMERICAL LINEAR ALGEBRA

12.1 Direct Methods for Linear Systems

Let

A =




a11 a12 · · · a1m
a21
:
an1 · · · anm


 .

A is n × m matrix, with n rows, and m columns. We also use A = aij to
denote same matrix.

Ax = b and Bx = d. are said to be “equivalent” if they have the same
solution.
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0

X

upper triangular

X

0

lower triangular

Figure 54: Upper and Lower triangular matrices. 0 indicates exclusively zero
entries, X indicates not all zero entries.

Three operations are permitted to simplify a linear system. These are Ele-
mentary Operations:

(a) Row multiply by λ 6= 0, λ is a scalar.

(b) λ× (Row)j can be added to Rowi

(c) Rowj can be exchanged with Rowi

Theorem: if Bx = d is obtained from Ax = b by a finite sequence of elemen-
tary operations then Ax = b and Bx = d are equivalent.

✷

12.1.1 Gaussian with Back Substitution:

Use above rules to form a “reduced” or “triangular” equivalent matrix prob-
lem, of the form shown in Figure 54

Consider the linear system

x1 − x2 + 2x3 − x4 = −8
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2x1 − 2x2 + 3x3 − 3x4 = −20
x1 + x2 + x3 = −2

x1 − x2 + 4x3 + 3x4 = 12

expressed compactly as Ax = b. This system can be expressed in the follow-
ing n× n + 1 “Augmented Matrix”




1 −1 2 −1 −8
2 −2 3 −3 −20
1 1 1 0 −2
1 −1 4 3 12




Denote each equation (or row) by Ei, i = 1, 2, 3, 4. Here, we’ve underlined
the first entry of E1 and we’ll call this element a pivot. The pivot is always
a nonzero element. Here, it is the left-most nonzero element. We ask then:
are there elementary operations that will produce zeros in all elements below
the pivot element?

Using the following elementary operations, E2− 2E1, E3−E1, and E4−E1,
the system is converted into the equivalent problem




1 −1 2 −1 −8
0 0 −1 −1 −4
0 2 −1 1 6
0 0 2 4 12




The underlined element is the new pivot. The next operation is to exchange
E2 and E3, resulting in




1 −1 2 −1 −8
0 2 −1 1 6
0 0 −1 −1 −4
0 0 2 4 12




Next, take 2E3 + E4 = E4, yielding



1 −1 2 −1 −8
0 2 −1 1 6
0 0 −1 −1 −4
0 0 0 2 4
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At this point we have an upper triangular matrix and back substitution,
starting with E4 going back up to E1 gives us

2x4 = 4 ⇒ x4 = 2
−x3 − x4 = −4 x3 = 4− x4 = 2
2x2 − x3 + x4 = 6 ⇒ 2x2 − 2 + 2 = 6 ⇒ x2 = 3
x1 − x2 + 2x3 − x4 = 8 ⇒ x1 − 3 + 4− 2 = −8 ⇒ x1 = −7

✷

Gaussian Elimination Algorithm(no pivoting)

Solves Ax = b

Input: A = (aij) 1 ≤ i ≤ n 1 ≤ j ≤ n + 1
A is the augmented matrix

Output: xi, 1 ≤ i ≤ n or error message.

1. for i = 1 . . . n− 1 do steps 2-4. % elimination

2. Find p the smallest integer with 1 ≤ p ≤ n and apk 6= 0. If no p can be
found, output (’No unique solution’)

3. if p 6= k then {Ep ↔ Ei} % swap if needed

4. for j = i+ 1 . . . n do steps 5 and 6.

5. mji = aji/aii;

6. Ej −mjiEi ↔ Ej % elimination

7. if ann = 0 output (‘no unique solution’) STOP

8. xn = an,n+1/ann % start of backward substitution

9. for i = n− 1 . . . 1

xi = [ai,n+1 −
n∑

j=i+1

aijxj ]/aii

10. output (x , the solution)
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✷

What types of failures could we expect? Here are two examples:

Example

A =




1 1 1 4
2 2 1 6
1 1 2 6


B =




1 1 1 4
2 2 1 4
1 1 2 6




a11 = 1⇒ (E2 − 2E1)→ E2 and E3 − E1 → E3

Ã =




1 1 1 4
0 0 −1 −2
0 0 1 2


 B̃ =




1 1 1 4
0 0 −1 −4
0 0 1 2




Note: a22 = a32 = 0

For Ã x3 = 2, −x3 = −2, x2 = 2− x1 ∴∞# of solutions

For B̃ x3 = 2, x3 = 4 ∴ no solution.

✷

Performance Issues:

One of the most vexing problems with direct methods is related to the com-
putational requirements of large linear-algebraic problems. Let’s consider
performance, as measured in terms of storage requirements and computa-
tional expense, as measured by the operation count. Measuring the compu-
tational expense in terms of operation count is appropriate here since we are
performing the computation as a string of sequential tasks. This would not
be the best way to measure the computational expense if the algorithm were
constructed and run on parallel processing machines.

Storage: only require 2D array of size (n, n + 1)

since we can store mji in the 0 entries aji (below diagonal entries are not
involved in the computation after pivoting).

Operation count:

Multiply/divide → considered “long operations”, since they take longer to
make (actually, divide takes longer than multiply, but let’s assume that they
take the same amount of time.
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Add/subtract → short operations, since they take a shorter amount of com-
pute time.

Look at Step 5 and 6 in the Gaussian Elimination algorithm without pivoting
(see 12.1.1):

Step 5 n− i divisions performed.

Step 6 The replacement Ej −mjiEi) → Ej requires mji multiplied by each
term Ei, resulting in a total: (n − i)(n − i + 1) multiplications. After this
is completed, each term of the resulting equation is subtracted from the
corresponding term Ej . This requires (n− i)(n− i+ 1) subtractions

∴ For each i = 1, 2, . . . , n − 1 the operations required in Steps 5 and 6 are:
Mult/Div (n− i) + (n− i)(n− i+ 1) = (n− i)(n− i+ 2)

Adds/Subt (n− i)(n− i+ 1)

Recall:
n∑

j=1

1 = n,

m∑

j=1

j =
m(m+ 1)

2
,

n∑

j=1

j2 =
m(m+ 1)(2m+ 1)

6

therefore, summing over i:

Mult/Div:
n−1∑

i=1

(n− i)(n− i+ 2) = (n2 + 2n)
n−1∑

i=1

1− 2(n+ 1)
n−1∑

i=1

i+
n−1∑

i=1

i2 =

2n3 + 3n2 − 5n

6

Add/Sub:

n−1∑

i=1

(n− i)(n− i+ 1) =
n3 − n

3

Now we go to the back substitution portion, Steps 8 and 9: Step 8: 1 division
Step 9: n− i multiplies and n− i− 1 adds for each summation term, then 1
subtract and 1 divide.
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So the total operation count in Steps 8 and 9:

Mult/Div: 1 +

n−1∑

i=1

[(n− i) + 1] =
n2 + n

2
;

Add/Sub:
n−1∑

i=1

[(n− i− 1) + 1] =
n2 − n

2

Total Operation count:

Mult/Div: 2n3+3n2−5n
6

+ n2+n
2

= n2 − n/3 + n3

3

Add/Sub: n3−n
3

+ n2−n
2

= n3

3
+ n2

2
− 5n

6

Therefore this algorithm is an O(n3) operation. If n is small, no big deal,
but if n is large, n3 is very large...clearly, direct methods will not be practical
in these circumstances. For large problems we’re better off with an iterative
method (see 12.3).

12.1.2 Pivoting and Scaling

Problem: In finite precision computations ill conditioning and round off can
cause serious problems. A simple way to avoid some of these problems is
accomplished through Pivoting or Scaling or both.

Example

0.0001x+ 1.00y = 1.00

1.00x+ 1.00y = 2.00

True solution rounded to 5 significant digits is x = 1.00010 y = 0.99990.

However, without rearrangement −10000y = −10000 ⇒ y = 1.00 and
x = 0.00.

With rearrangement

1.00x+ 1.00y = 2.00

0.0001x+ 1.00y = 1.00
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we get x = 1.00 y = 1.00

Great improvement!

Analysis of problem:

Example

E1 : 0.003000x1 + 59.14x2 = 59.17

E2 : 5.291x1 − 6.130x2 = 46.78

has exact solution x1 = 10.00 x2 = 1.00

Use 4 digit rounding:

a11 = 0.003000 is pivot and small

m21 =
5.291

a11
= 1763.66 rounds to 1763.

(E2 −m21E1)→ E2 gives

0.003000x1 + 59.14x2 = 59.17

−104300x2 = −104400
instead of precise value

0.003000x1 + 59.14x2 = 59.17

−104309.376x2 = −104309.376

→ disparity in magnitude of m21b1 and b2 has introduced roundoff, but error
has not yet propagated. Backward substitution yields:

x2 = 1.001 close to x2 = 1.000

However

x1 ≈
59.17− (59.14)(1.001)

0.003000
= −10.00

contains small error of 0.001 multiplied by
59.121

0.003000
. Geometrically, it is

clear what is happening: see Figure 55

The problem can be seen most clearly as follows:
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E_2

E_1

x_1

x_2

10-10

Figure 55: The solution is the point of intersection of the vectors E1 and
E2. The predicted approximation, using 4 digit rounding is indicated by the
square box.

if |a11| small compared to |ai1| ⇒ λ = −ai1/a11 is very large.

then (Ei + λE1)→ Ei gives
(ai2 + λa12)x2 + · · · (ain + λain)xn = bi + λb1

if λ large, it’s like replacing the Ei by a multiple of Ei!

If λ small, then no problem, although rounding still occurs.

Strategy: Find row index I such that

|aI1| = max
1≤i≤n

|ai1|

and rewrite the system so that I th equation becomes first equation.

Now −ai1/aI1 is small.

Process is repeated...this is called Partial Pivoting and it involves row ex-
changes only.

Partial Pivoting as opposed to Full pivoting...it comes from direct application
of the “elementary transformations”, but is done in a smart way. It is a simple
method, as compared to full pivoting, discussed later.
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In full pivoting further reduction can be accomplished, however, it is more
complex since it involves both row and column exchanges.

Look at the following partial pivoting example:

[
0.003000 59.14 59.17
5.291 −6.130 46.78

]

1: find max{|a11, |a21|} = 5.291 = |a21|

Since |a21| > |a11| then exchange E2 and E1

then proceed as usual, since m21 =
a21
a11

= 0.0005670 small.

For larger systems look for largest |ai1 |1 ≤ i ≤ n. Take




a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
: : : : :

an1 an2 · · · ann bn




suppose it’s a21 then “exchange row EI+1 with E2.” Use a21 for pivot value
and perform row reduce.




a21 a22 · · · a2n b2
0 × · · · × ×
0 × · · · × ×
0 × · · · × ×
0 × · · · × ×




and Repeat Procedure...

Note: Algorithm does not require actual row exchange in the original ma-
trix. This is an expensive computational operation that is avoided by simply
keeping track of the row operations at the expense of an array that contains
the sequence of row exchanges...more later in 12.1.6.

Another strategy: same thing but also perform column exchanges. Total or
Full pivoting: expensive because it is hard to keep track of row and column
exchanges. This ensures that pivot is maximal!
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First step find |aIJ | = max1≤i,j≤n |aij |. Retain the I th equation and eliminate
the coefficient of xJ in the I th equation, 1 ≤ i ≤ n, i 6= I by replacing the ith

equation by (−aiJ/aIJ)× EI + Ei → Ei

✷

Pivoting may still fail:

Example

E1 : 30.00x1 + 591400x2 = 591700

E2 : 5.291x1 − 6.130x2 = 46.78

m21 =
5.291

30.00
= 0.1764

⇒ 30.00x1 + 591400x2 ≈ 591700

−104300x2 ≈ −104400
⇒ x1 ≈ −10.00 x2 ≈ 1.001⇐Wrong.

Problem always requires suspicion if entries are of disparate sizes. This can
sometimes be ameliorated using a scaling strategy.

There are a number of scaling strategies. Consider here “Row Scaling”

Take Ax = b

multiply Eiby ri i = 1, . . . n.

Ax = b→ D1Ax = D1b D1 =




r1
r2

r3
:

rn




Let B = D1A

Choose ri so that B = bij satisfies

max
j
|bij | ≈ 1 i = 1, 2, . . . , n(60)

(60) is satisfied if ri = 1/si

si = max
j
|aij | i = 1, 2 . . . , n(61)
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∴ bij = aij/sj i, j = 1, 2 . . . , n.(62)

(62) can produce additional rounding errors: Use “scaled partial pivoting”:
If the choice of pivot elements with scaling is forced to remain the same as
with no scaling ⇒ solution of scaled = unscaled.

Scaled Partial Pivoting:

1) Before elimination, compute si using (61) for i = 1, 2, . . . , n.

2) Before calculating the multipliers at kth step, scan kth- column of A
and determine p such that

|apk|
sp
≥ |alk|

sl
l = k, k + 1, . . . , n

3) if p 6= k → interchange p and k. The matrix is actually not scaled.
That is, no computation on the matrix itself is involved. All that is
required is to effect a comparison. This would be an 0(n2) operation,
which we clearly want to avoid.

Example

Solve: [
0.7000 1725 1739
0.4352 −5.433 3.271

]

using 4 digit rounding row sizes s1 = max(0.7, 1725) = 1725 s2 = 5.433

Since |a11|/s1 = 0.0004 < |a21|/s2 = 0.0801

⇒ exchange rows 1 and row 2.
[
0.432 −5.433 3.271
0.700 1725 1739

]

m2 = 0.700/0.4352 = 1.608⇒
[
0.4352 −5.433 3.271

1734 1734

]

x2 = 1.000 x1 = 20.00 which is good.

Exercise

Do above without scaled partial pivoting. ✷
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12.1.3 The LU Factorization

We saw Ax = b requires O(n3) steps to solve by Gaussian elimination. Some
matrices can be factored as

A = LU

so Ax = b→ LUx = b

let y = Ux

then Ly = b since L, U are trianglular

they require O(n2) operations

∴ reduce O(n3) to O(n2) to solve Ly = b

✷

Example n = 100 ⇒ n3 = 106 n2 = 104 ∴
n2

n3
= 10−2 ,i.e. the reduction is

99%!

Of course to determine LU is still O(n3).

✷

To illustrate: assume Gaussian can be done without pivoting: i.e. nonzero
pivot elements for each i = 1, 2 · · · , n.

1) First step in Gaussian consists

(Ej −mj1E1)→ Ej where mj1 =
a
(1)
j,1

a
(1)
1,1

Get new matrix

A(2) =




a
(2)
11 a

(2)
12 a

(2)
13 · · ·

0 a
(2)
22 a

(2)
23 · · ·

: : a
(2)
33 · · ·

: : : · · ·
: 0 : · · ·
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A(2)x = M (1)Ax = M (1)b = b(2)

M (1) =




1 0 0 0 0 · · · 0
−m21 1 0 0 0 · · · 0
−m31 0 1 0 0 · · · 0

: 0 0 1 0 · · · 0

: : : :
. . . 0 0

: 0 0 0 · · · 1 0
−mn1 0 0 0 · · · 0 1




Construct M (2) in same way with mj,2 =
a
(2)
j,2

a
(1)
2,2

A(3)x = M (2)A(2)x = M (2)M (1)Ax = M (2)M (1)b = b(3)

∴ if have A(k)x = b(k)then multiply (left) by

M (k) =




1 0 0 0 0 · · · 0
0 1 0 0 0 · · · 0
0 0 1 0 0 · · · 0
0 0 −mk+1,k 1 0 · · · 0

: : : 0
. . . 0 0

0 0 −mn−1,k 0 · · · 1 0
0 0 −mn,k 0 · · · 0 1




the “Gaussian transformation matrix”,

to get A(k+1)x = M (k)A(k)x = M (k)b(k) = b(k+1) = M (k) · · ·M (1)b

Process ends with A(n)x = b(n)

A(n) = M (n−1)M (n−2) · · ·M (1)A upper triangle.

A(n) = 


a
(1)
11 a

(1)
12 · · · a

(1)
1,n

0 a
(2)
22 :

: : : :

: 0 a
(n−1)
n−1,n :

0 0 0 a
(n)
nn



= U

Now we tackle the L part:
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1) Recall that M (k) is used to

A(k+1)x = M (k)A(k)x = b(k+1)

where M (k) generates

(Ej −mj,kEk)→ Ej j = k + 1, . . . , n

To reverse the effects of the transformation and return to A(n)

requires (Ej +mj,kEk)→ Ej be performed j = k + 1, . . . , n.

This is equivalent to multiplying by the inverse of M (k)

L(k) = [M (k)]−1 =




1 0 0 0 0 · · · 0
0 1 0 0 0 · · · 0
0 0 1 0 0 · · · 0
0 0 mk+1,k 1 0 · · · 0

: : : 0
. . . 0 0

0 0 mn−1,k 0 · · · 1 0
0 0 mn,k 0 · · · 0 1




Let L = L(1)L(2) · · ·L(n−1) =




1 0 · · · 0
m21 1 0
: 1 · · · :
: 1 0

mn,1 · · · mn,n−1 1




The product of L with U = M (n−1) · · ·M (2)M (1)A gives

LU = L(1)L(2) · · ·L(n−3)L(n−2) L(n−1) ·M (n−1)
︸ ︷︷ ︸

I

M (n−2)M (n−3) · · ·M (2)M (1)A

= L(1)L(2) · · ·L(n−3)L(n−2)IM (n−2)M (n−3) · · ·A
= L(1)L(2) · · ·L(n−3)IM (n−3) · · ·A = A

Theorem: If Gaussian elimination can be performed in Ax = b without row
interchange ⇒ A = LU factorization is possible.

✷
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Note: A = LU is not a unique factorization. For example let

A =

(
4 1
1 2

)
=

(
4 0
1 7/4

)(
1 1/4
0 1

)
=

(
1 0
1/4 1

)(
4 1
0 7/4

)
.

Thus, in general, one can move the diagonal factors around. However, the
LDU decomposition is unique. Here, D is a diagonal matrix, L and U are
unit lower and upper triangular matrices, respectively.

Suppose that the matrix factors as A = LU using the Gaussian elimination
algorithm algorithm 12.1.1 with no row exchanges needed. The diagonal
entries of L are all 1’s with this algorithm, i.e. L is unit lower triangular.
We can further factor U = DU ′, taking D to be a diagonal matrix with
dii = uii, and u′

ij = uij/uii. This factorization is unique. Suppose that we
have A nonsingular with A = LDU = L′D′U ′. Then (L′)−1LD = D′U ′U−1

The left side of this equation is a product of lower triangular matrices, and
is thus lower triangular, the right side is upper triangular, so, their common
value is diagonal. Call that value D′′. then we have (L′)−1LD = D′′, and
so (L′)−1L = D−1D′′ It is easily checked that the product of triangular
matrices with unit diagonals is again a triangular matrix with unit diagonal.
This shows that (L′)−1L = I = D−1D′′. Thus L′ = L andD = D′′. Similarly,
we get that (D′)−1D′′ = U ′U−1 and so U = U ′ and D′ = D′′. This proves
that the LDU factorization is unique.

✷

Not every matrix can be LU -decomposed:

Example:

4x2 = 8

4x1 + 2x2 = 17

A =

[
0 4
4 2

]
=

[
1 0
ℓ21 1

] [
u11 u12

0 u22

]

u11 = 0

ℓ21u11 = 4 ∴ cannot satisfy.

A =

[
4 2
0 4

]
=

[
1 0
0 1

] [
4 2
0 4

]
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this ensures that no urr is O. This rearrangement is always possible if the
solution is unique.

✷

with this understood, we can very quickly discuss three popular LU decom-
position algorithms:

12.1.4 Doolittle, Crout’s, and Choleski Algorithms

Doolittle Algorithm: get ℓii = 1 i = 1 . . . n. “Unit lower Trianglular”
Crout’s Algorithm: get uii = 1 i = 1 . . . n “Unit Upper Triangular”
Choleski: U = LT ℓii = uii i=1. . . n

12.1.5 LDL factorization of symmetric matrices and Cholesky fac-
torization of Positive definite matrices

One of the important themes in numerical linear algebra is that whenever
possible, we take advantage of any special structure of matrices in our compu-
tations. One important class of “special” matrices is the symmetric matrices
A = AT . Obviously, we can store such matrices using roughly half the mem-
ory, it is natural to ask if we can solve the system Ax = b in such a way that
we take advantage of the symmetry.

Let’s start by looking at a simple 2× 2 example:

Let A =

(
4 1
1 2

)
, then we can start the factorization process as

A =

(
1 0
1/4 1

)(
4 1
0 7/4

)

Notice that the symmetry is lost. We can repair that problem by continuing:

A =

(
1 0
1/4 1

)(
4 0
0 7/4

)(
1 1/4
0 1

)

This factors the matrix A = LDLT as a product of a lower triangular matrix
with 1’s on the diagonal, times a diagonal matrix times the transpose of the
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lower triangular matrix. In this case the diagonal entries are positive, so we
can factor further as

A =

(
1 0
1/4 1

)(
2 0

0
√
7/2

)(
2 0

0
√
7/2

)(
1 1/4
0 1

)

=

(
2 0

1/2
√
7/2

)(
2 1/2

0
√
7/2

)

That is we factor A = LLT with L a lower triangular matrix.

The same sorts of factorizations are possible for n× n matrices.

Before we dig into this problem it is worth recalling some basic facts about
matrices:

1. (AB)T = BTAT

2. (AB)−1 = B−1A−1

3. (A−1)T = (AT )−1

4. The product of upper (lower) triangular matrices is upper (lower) tri-
angular.

5. If an upper (lower) triangular matrix is invertible, the inverse is also
upper (lower) triangular.

If A is symmetric and it is factored as A = LDU = UTDLT , then by unique-
ness, U = LT and A = LDLT . Now that we know that a symmetric (non-
singular) matrix which has an LU factorization can be uniquely factored as
LDLT , we can ask how this factorization can be implemented in an algo-
rithm. We could just use the Gaussian elimination algorithm, and extract
the D’s entries after we had produced U . This works, but is not taking full
advantage of the symmetry. An efficient algorithm avoids storing or calcu-
lating the upper triangle of entries at all. The following algorithm is not
optimized for storage, but takes advantage of the symmetry to cut the work
in half. This algorithm is from section 4.1.2 of Golub and Van Loan

input: A a symmetric nonsingular matrix with an LU factorization

output: L lower triangular and d, the diagonal entries of D
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for j=1:n

# Note this loop is not executed at all when j=1

for i=1:j-1

v(i)=L(j,i)d(i)

end

# v is a temporary vector of size n

# note that the second term (the sum) is 0 if j=1

v(j)=A(j,j)-
∑j−1

i=1L(j,i)v(i)

d(j)=v(j)

# if this d(j)=v(j) is zero, that means that A had no LU factorization

# real code should test for this error condition.

L(j+1:n,j)=(A(j+1:n,j)-
∑j−1

i=1L(j+1:n,i)v(i))/v(j)

end

In the special case where the entries of D are all positive, it is possible to
take the square root of the diagonal matrix D = D′′D′′, with d′′ii =

√
dii.

Then we can define L′ = LD′′ and we have A = L′(L′)T . It turns out that
this special case arises in many contexts, and there is a name for this kind
of symmetric matrix.

Definition: A symmetric matrix A = AT is said to be positive definite, if for
any vector x 6= 0, xTAx > 0.

Theorem A symmetric matrix is positive definite if and only if it has a fac-
torization A = LLT with L a nonsingular lower triangular matrix.

Proof: If A = LLT with L nonsingular, then xTAx = xTLLTx. Let u = LTx,
then we have xTAx = uTu =

∑n
i=1 u

2
i , and we have that unless u = 0,

xTAx > 0. The only way u = LTx could be 0 is if x = 0, since L is
nonsingular, so if x 6= 0, xTAx > 0.

On the other hand, if we assume that A is positive definite, then write

A =

(
α vT

v C

)

since A is positive definite, eT1Ae1 = α > 0 so we can factor

A =

(
1 0
v/α I

)(
α 0
0 C − vvT/α

)(
1 vT/α
0 I

)
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Let A′ = C− vvT/α. If we can show that A′ is positive definite, we will have
shown inductively that the factorization works. Let u 6= 0 ∈ Rn−1. Then
define x ∈ Rn by xT = (−uTv/α, uT ).

xTAx = (−uTv/α, uT )

(
0
−(uTv)v/α+ Cu

)
= uTA′u,

so uTA′u > 0 whenever U 6= 0. That is A′ is positive definite. Continuing
inductively we conclude we can factor A = LDLT with all diagonal entries
dii > 0. As we saw above, this is sufficient to allow us to get the desired
factorization. ✷

The factorization of a symmetric positive definite matrix as A = LLT is called
Cholesky factorization. The algorithm can be implemented quite efficiently:

input: A, symmetric positive definite

output: A, (L overwrites the lower triangle of A)

for k=1:n-1

# if A(k,k) is not positive, A was not positive definite,

# real code should test for this possibility

A(k,k)=sqrt(A(k,k))

# this scales the column

A(k+1:n,k)=A(k+1:n,k)/A(k,k)

# and the inner loop subtracts the rank one matrix

# vvT/α from the remaining lower block.

for j=k+1:n

A(j:n,j)=A(j:n,j)-A(j:n,k)A(j,k)

end

end

This is algorithm 4.2.2 from section 4.2.5 of Golub and Van Loan.

Remark: Note that this never accesses any elements above the diagonal. This
is possible because the matrix is symmetric. We always access the lower
triangle. This frees memory.
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Example Consider the symmetric matrix

A =




1 1 4 −1
1 5 0 −1
4 0 21 −4
−1 −1 −4 10




In fact we do not need the elements above the diagonal because they will
just be the same as below the diagonal by symmetry. All we need is

A =




1 · · ·
1 5 · ·
4 0 21 ·
−1 −1 −4 10


 .

We will follow the above algorithm to calculate L, the lower triangular matrix.

For k = 1 the steps we need to complete are

• A1(1, 1) =
√
A(1, 1)

• A1(2 : 4, 1) = A(2 : 4, 1)/A(1, 1)

• A1(2 : 4, 2) = A(2 : 4, 2)− A1(2 : 4, 1)A1(2, 1)

• A1(3 : 4, 3) = A(3 : 4, 3)− A1(3 : 4, 1)A1(3, 1)

• A1(4, 4) = A(4, 4)− A1(4, 1)A1(4, 1)

Remark The above operations should be row operations. However we can
exploit the symmetry of the matrix and use the columns instead. This way we
do not need to explicitly store the matrix elements from above the diagonal.

This gives us the new matrix A1

A1 =




1 · · ·
1 4 · ·
4 −4 5 ·
−1 0 0 9


 .

For k = 2 we perform the following steps
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• A2(2, 2) =
√
A1(2, 2)

• A2(3 : 4, 2) = A1(3 : 4, 2)/A2(2, 2)

• A2(3 : 4, 3) = A1(3 : 4, 3)−A2(3 : 4, 2)A2(3, 2)

• A2(4, 4) = A1(4, 4)− A2(4, 2)A2(4, 2)

which gives the following matrix

A2 =




1 · · ·
1 2 · ·
4 −2 1 ·
−1 0 0 9


 .

For k = 3 we have

• A3(3, 3) =
√
A2(3, 3)

• A3(4, 3) = A2(4, 3)/A3(3, 3)

• A3(4, 4) = A2(4, 4)− A3(4, 3)A3(4, 3)

In this example the matrix A3 is the same as the matrix A2.

For k = 4 we just have

• A4(4, 4) =
√
A3(4, 4)

giving

A4 =




1 · · ·
1 2 · ·
4 −2 1 ·
−1 0 0 3


 .

From this we can see that

L =




1 0 0 0
1 2 0 0
4 −2 1 0
−1 0 0 3


 .
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and

LLT =




1 0 0 0
1 2 0 0
4 −2 1 0
−1 0 0 3







1 1 4 −1
0 2 −2 0
0 0 1 0
0 0 0 3


 =




1 1 4 −1
1 5 0 −1
4 0 21 −4
−1 −1 −4 10


 = A

Remark: The reduction of work realized in using the symmetry of our matri-
ces is not the only reason that we employ Cholesky factorization whenever
we can. Cholesky factorization has superior stability properties.

12.1.6 Permutation Matrix

Remark: Row exchange is needed to control round-off error, so it may seem
impractical to use these algorithms. However, there are a number of matrix
types where solution without row interchange is possible. First, let’s present
a useful construct, the Permutation matrix.

(n×n) used to rearrange or permute rows of a given matrix: P has precisely
1 entry whose value is 1 each column and each row, other entries are zero.

Example P =




1 0 0
0 0 1
0 1 0




left-multiply:

PA =




1 0 0
0 0 1
0 1 0






a11 a12 a13
a21 a22 a23
a31 a32 a33


 =




a11 a12 a13
a31 a32 a33
a21 a22 a23




Get different answer for right multiply AP .

Properties two are useful with respect to Gaussian elimination:

1) As described above, PA permutes the rows of A

2) if P is a permutation matrix ⇒ P−1 exists and P−1 = P T

Remark: Since for any nonsingular matrix A ⇒ Ax = b can be solved by
Gaussian elimination, with the possibility of row interchanges, then there is
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a rearrangement that could result in a matrix that can be solved without
row interchanges.

Thus with a non-singular there exists

PAx = Pb

which can be solved without row interchanges.

PA = LU. Since P−1 = P T

⇒ A = (P TL)U

However, unless P = I P TL is not lower triangular.

✷

Example Let’s take

A =




0 0 1 1
1 2 1 0
1 3 2 1
1 1 1 4




no LU since a11 = 0. However, let’s use the permutation matrices to trans-
form the problem:

E1 ↔ E2, followed by E3 −E1 → E3, E4 − E1 → E4 ∴




1 2 1 0
0 0 1 1
0 1 1 1
0 −1 0 4




then E2 ↔ E3, (E4 + E2)→ E2

U =




1 2 1 0
0 1 1 1
0 0 1 1
0 0 1 4
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then (E4 − E3)→ E3

U =




1 2 1 0
0 1 1 1
0 0 1 1
0 0 0 3




Permutations associated with E1 ↔ E2 and E2 ↔ E4 are

P =




0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1




P1 : E1 ↔ E2

P1 =




0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1




P2 : E2 ↔ E3

P2 =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




∴ P = P2P1 =




0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1


 and P−1 = P T =




0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1




PA =




1 2 1 0
1 3 2 1
0 0 1 1
1 1 1 4




OK, now we do Gaussian elimination if we were solving for Ax = b on PA:

E2 − E1 → E2

(α)




1 2 1 0
0 1 1 1
0 0 1 1
1 1 1 4
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E4 − E1 → E4

(β)




1 2 1 0
0 1 1 1
0 0 1 1
0 −1 0 4




E4 + E2 → E4

(γ)




1 2 1 0
0 1 1 1
0 0 1 1
0 0 1 5




E4 − E3 → E4

(δ)




1 2 1 0
0 1 1 1
0 0 1 1
0 0 0 4


 = U(63)

So to write down the LU factorization of PA:

from (α) we see that

L =




1 1 0 0




from (β), (γ) and (δ) we see that

L =




1 1 0 0

1 −1 1 1


 .

Since rows 1 and 3 are left unchanged

L =




1 0 0 0
1 1 0 0
0 0 1 0
1 −1 1 1




∴ PA =




1 0 0 0
1 1 0 0
0 0 1 0
1 −1 1 1







1 2 1 0
0 1 1 1
0 0 1 1
0 0 0 4


 ≡ LU
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Multiply by P T ⇒ A = (P TL)U and we recover A.

∴ Gaussian elimination can be performed on PA without row interchange
using E2 −E1 → E2, E4 −E1 → E4, E4 + E2 → E4, E4 − E3 → E4

PA =




1 0 0 0
1 1 0 0
0 0 1 0
1 −1 1 1







1 2 1 0
0 1 1 1
0 0 1 1
0 0 0 4


 = LU

✷

What types of Matrices permit Gaussian Elimination without Row inter-
change? One important class is strictly diagonally dominant matrices.

definition: Strictly Diagonally Dominant n× n matrix A if

|aii| >
u∑

j=1
j 6=i

|aij | holds for i = 1, 2 . . . n

Example

A =




7 2 0
3 5 −1
0 5 −6




B =




6 4 −3
4 −2 0
−3 0 1




Note: A is non-symmetric, and B is symmetric. A is diagonally dominant,
B is not. AT is not strictly diagonal and neither is BT = B

✷

Theorem The following statements are equivalent for n× n matrix A:

a) Ax = 0 has a unique solution x = 0.

b) Linear system Ax = b has unique solution for any n-column vector b.

c) A nonsingular ⇒ A−1 exists
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d) detA 6= 0

e) Gaussian elimination with row exchanges can be performed on Ax = b

✷

12.2 Special Matrix Types

Theorem: A strictly diagonally dominant matrix A is nonsingular. Moreover,
Gaussian elimination can be performed without row interchanges on Ax = b
to obtain unique solution and computation is stable with regards to growth
of round-off errors.

Proof: First, prove A is not singular by contradiction. We’ll assume that A
is an n× n matrix, and that the vectors b and x are n-dimensional vectors.

Take Ax = 0 and suppose that non-zero x with components xi exists.

Let k be index for which

0< |xk| = max
1≤j≤n

|xj |

Since
n∑

j=1

aijxj =0 for each i = 1, 2, . . . , n, we have

when i = k akkxk = −
n∑

j=1
j 6=k

akjxj

this implies that

|akk||xk| ≤ −
n∑

j=1
j 6=k

|akj||xj|

or |akk| ≤
n∑

j=1
j 6=k

|akj|
|xj|
|xk|
≤

n∑

j=1
j 6=k

|akj|
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this contradicts the strict diagonal dominance of A therefore the only solution
of Ax = 0 is x = 0.

Proof: Next, prove that Gaussian elimination can be performed without
row exchanges: show that A(2) . . . A(n−1) generated by Gaussian process are
strictly diagonal dominant.

Recall that a symmetric matrix A is positive definite if xTAx > 0 for every
x, an n-dimensional vector.

xTAx = [x1 . . . xn]
T [aij ]




x1

:
xn


 =

n∑

i=1

n∑

j=1

aijxixj

a single 1× 1 matrix.

Not easy to check this way. Instead:

Theorem if A is positive definite n× n matrix then

a) A is nonsingular

b) aii > 0 for each i = 1, 2, n

c) max
1≤k,j≤n

|akj| ≤ max
1≤i≤n

|aii|

d) (aij)
2 < aiiajj for each i 6= j.

Theorem: A is symmetric positive definite if and only if Gaussian elimination
can be performed without row exchange on Ax = b with all pivots positive.

Corollaries:

1) A is positive definite if and only if A = LDLT , L is unit lower triangular
D is diagonal matrix dii > 0.

2) A is positive definite if and only if A = LLT , L lower triangular
lii 6= 0.
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✷

definition: n × n matrix is called a “Banded Matrix” if p and q ∈ N with
1 < p, q < n exist, with the property aij = 0 whenever i+ p ≤ j or j + q ≤ i.
The bandwidth is then defined as the number bw ≡ p + q − 1. For example
the matrix with non-zero entries marked as x:

A =




x x x 0 0 0 0 0
0 x x x x 0 0 0
0 0 x x 0 0 0 0
0 0 x x x 0 0 0
0 0 x x x 0 0 0
0 0 0 x x x 0 0
0 0 0 0 x x x x
0 0 0 0 0 0 x x




has a bandwidth of bw = 6.

It is almost always true that many of the zero entries in a matrix needn’t
be stored. A matrix with a small bandwidth will thus require little storage,
enabling one to consider bigger problems on any finite-memory machine.
Furthermore, many matrices with small bandwidths have, in addition, other
nice properties, for example, strong diagonal dominance, etc. Researchers
spend much time optimizing codes that are storage efficient and also have
nice mathematical properties which enable them to produce more efficient
solvers. The efficient storage of matrices is called “Packing”.

Example: Two common small bandwidth matrices which come up in the so-
lution of pde’s, for example, is the tri-diagonal and penta-diagonal matrices.

Tridiagonal Matrix (Banded Matrix) will have the structure:



a11 a12 0 0 · · · 0
a21 a22 a23 0 · · · 0
0 a32 a33 a34 0 :
: 0 a43 a44 a44 :
: : : : : :
: : : : : 0
0 : : an−1 an−1 an−1,n

0 · · · · · · 0 an,n−1 ann




235



here p = q = 2, thus bw = 3.

✷

If this matrix is diagonally dominant, then it is very easy to solve the problem
Ax = b, for x: The algorithm is called the “Thomas Algorithm” and it is
the result of the Crout factorization: formally write A = LU , where U is
upper-triangular and L is unit-lower triangular. Then the forward problem
is to solve Ly = b, the the backward problem is to solve Ux = y. These are
two simple solves, since the matrices are triangular. Generalizations of the
following algorithm exist for the penta-diagonal case, for the tri- or penta-
diagonal case with 1 entry in the upper right hand corner and one in the lower
left hand corner (see tridiagonal and pentadiagonal solvers at netlib. These
occur frequently in the solution of pde’s with periodic boundary conditions)
.

12.2.1 Crout Factorization of Tri-diagonal Linear System

Ax = b, with equations of the form

E1 a11x1 + a12x2 = b1 = a1,n+1

E2 a21x1 + a22x2 + a23x3 = b2 = a2,n+1

: : = :
En an,n−1xn−1 + annxn = bn = an,n+1

Note: the array b is stored in the n+ 1 column of the extended matrix A, of
size n× (n+ 1).

Input: n, entries of A. The vector b is stored in the n+ 1 column of A.
Output: solution x1, . . . , xn.
Algorithm:
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Step 1: Set ℓ11 = a11
u12 = a12/ℓ11

Step 2: for i = 2 . . . n− 1
set ℓi,i−1 = ai,i−1%ith row of L
ℓii = aii − ℓi,i−1ui−1,i

ui,i+1 = ai,i+1/ℓii% (i+ 1) column of U
Step 3: ln,n−1 = an,n−1

ln,n = ann − ln,n−1un−1,n

%Solve Lz = b :
Step 4: z1 = a1,n+1ℓ11
Step 5: for i = 2, . . . , n

zi =
1
ℓii
[ai,n+1 − ℓi,i−1zi−1]

%Solve Ux = z
Step 6: xn = zn
Step 7: for i = n− 1, . . . , 1

xi = zi − ui,i+1xi+1

Step 8: output (x1, . . . , xn)
STOP

✷

12.3 Iterative Methods for Solving Algebraic Systems

Want to solve
A(v)− b = 0,(64)

where A is a nonlinear discrete operator, b is a known vector, and the discrete
solution is v.

Often the solution to (64) is difficult to obtain directly, but the residual error

r = A(w)− b

for an approximate solution w is easy to evaluate. If there is a related system

P (w)− b = 0
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Table 1: Common Examples of Defect Correction Iteration

P (vn+1) METHOD
A(vn) + JA(vn)(vn+1 − vn) Newton

Diagonal JA Jacobi
Lower triangular part of JA Gauss-Seidel
Lower triangular part of JA

plus first upper off-diagonal
Line Gauss- Seidel

Coarse grid operator
plus relax using one of the above

Multigrid

Symmetric part of JA Concus-Golub-O’Leary
If Λ = (I +∆tLx +∆tLy),

the P = (I +∆tL̃x +∆tL̃y),

where L̃x is the linearized lower order
approximation of L.

ADI

LU , where L lower U upper triangular incomplete LU

that approximates (64) and is easier to solve, the defect correction algorithm
may be appropriate: Given a guess vn near a root vn+1 of (64) we can expand
this equation using a Taylor series to get:

0 = A(vn+1)− b

= A(vn+1)− b+ P (vn+1)− P (vn+1)

= A(vn)− b+ P (vn+1)− P (vn)− (JP − JA)(vn+1 − vn) +O(ǫ2),(65)

where ǫ = vn+1 − vn. The defect correction iteration is any O(ǫ) approxima-
tion to (65).

The simplest such iteration is

P (vn+1) = P (vn) = A(vn) + b.(66)

This iteration will converge if vn and JP the Jacobian of P are near enough to
vn+1 and JA, respectively. Table 1 lists some of the more common applications
of defect corrections.

The iteration of (66) can often be sped up by using a one-step acceleration
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parameter ω to give

P (vn+1) = P (vn)− ωn[A(vn)− b].

These accerated methods include SOR, dynamic alternating direction im-
plicit methods, and damped Newton. Often a 2-step acceleration method

P (vn+1) = b+ ωn[P (vn)− αnA(vn)] + (1− ωn)P (vn−1)

can speed up the convergence even more. These method include Chebyshev
and Conjugate Gradient methods.

12.3.1 Newton’s Method for Nonlinear Systems

Solving nonlinear systems iteratively is an active area of research, and there
are a number of good sources to consult6. Some of the most common methods
are:

1. Steepest Descent

2. Conjugate Gradient (see 12.3.4)

3. Broyden and variable metric methods (see BFGS at netlib

4. Fixed Point Methods

5. Method of Weighted Residuals

This list is not comprehensive, of course, but perhaps the most common
method is “Newton Raphson’s Method” which we will do next. It is also a
good method to understand since many of its pros and cons are the basis
for the development of other methods. Let f(x) ∈ C2 be an n-dimensional
vector of functions that depend on x ∈ Rn. The problem we want to solve is
the root-finding problem

f(x) = 0.

6The book by Reinhardt, Varga, et al. and the book on Optimization by Nocedal and
Wright are good starting places for the basics and a survey, respectively
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That is,

fi(x1, . . . , xn) = 0 1 ≤ i ≤ n

x = (x1, x2 . . . , xn)
T

f = (f1, f2, . . . , fn)
T .

Just as we did in the scalar case, we expand f about x, locally (see 5.3) and
retain to first order in ||H||:

0 = f(x +H) ≈ f(x) + J(x)H+O(||H||2).

Here, the Jacobian Matrix is

J(x) ≡ f ′(x) =




∂f1/∂x1 ∂f1/∂x2 · · · ∂f1/∂xn

∂f2/∂x1 · · · · · · ∂f2/∂xn

: : : :
: : : :
: : : :

∂fn/∂x1 · · · · · · ∂fn/∂xn



.

Hence, we can solve formally for the perturbation:

H = − [J(x)]−1 f(x),

it is now straightforward to see that the situation is not different from the
scalar case. We form an iterative problem: iteratively solve for x(k+1), for
k = 0, 1, 2, . . ., starting with some initial guess x0. This can be done by
solving for the update Hk, using

J(xk)Hk = −f(xk),

which is a linear-algebraic problem, with an update

x(k+1) = xk +H(k).

Convergence is now measured in terms of vector norms and the conditions for
success or failure are more complex, but more geometrical (which is neat!).
The same algorithmic issues discussed in the scalar case apply here (see 5.3).
The new issue is: How to solve the linear algebraic problem. We know how
to solve these types of problems with direct methods (see 12.1). But as we
already know, direct methods are not always the most efficient technique,
and in some instances, they are computationally prohibitive. So we study
next iterative techniques for the solution of linear systems.

240



12.3.2 Iterative Techniques for Solving Linear Systems

We’ll consider here three closely associated elementary methods: Jacobi
(12.3.2), Gauss-Seidel (12.3.2), and Successive over-relaxation (SOR) (12.3.2).
We will then discuss briefly Conjugate Gradient (for the solution of linear
systems)(see 12.3.4), and later, the Multigrid method7.

We want to solve
Ax = b,

here x and b are in Rn, and A is an n× n matrix. The basic idea in Jacobi,
Gauss-Seidel and SOR Solve using an initial guess x0 to x, by generating
a sequence

{
x(k)
}∞
h=0

that converges to x. This technique is especially well
suited for large matrix problems, and is quite fast if the problem is well-
conditioned. Moreover, it can be made very efficient if A has lots of zeros.

How?

Convert (12.3.2) into

x = Tx+ c(67)

after x(0) is selected, then

xk+1 = Txk + c k = 0, 1 . . .

Example Take 

−1 0.1 0.5 : −0.3
0.2 10 2 : 22.2
0.5 1 −3 : −0.5




has solution
x = [1, 2, 1]T

To convert (12.3.2)into x = Tx+ c ; solve for xi i = 1, 2, 3 :

x1 =
1

10
x2 +

1

2
x3 + frac310

x2 = − 1

50
x1 −

1

5
x3 +

222

100

x3 =
1

6
x1 +

1

3
x2 +

1

6
7LINK multigrid
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Then T =




0 1
10

1
2

− 1
50

0 −1
5

1
6

1
3

0


 c =




3
10
222
100
1
6




Take x(0) = [0, 0, 0]T as the initial guess. Solving above generates x(1) =
[0.9000, 2.0000, 0.6667]T . Then use this as a next guess and find x(2), and so
on. You’ll find that you need about 10 iterations to get x10 = [1.0000, 2.0000, 1.0000]T .

In fact,

||x10 − x9||∞
||x10||∞

=
8 · 0 · 10−4

1.9998
< 10−3 in fact ||x10 − x||∞ = 0.0002.

✷ This is the basic idea behind Jacobi iteration. So let’s formalize it:

Jacobi Iteration

Solve xi =
n∑

j=1
i6=j

(
−aijxj

aii

)
+

bi
aii

i = 1, 2 · · ·n(68)

To generate a sequence: for k ≥ 1 . . .

x
(k)
i =

1

aii





n∑

j=1
i6=j

[
1− aijx

(k−1)
j + bi

]




i = 1, 2, . . . , n

Compactly:
A = D − L− U =

=




a11 0
a22

. . .

0 ann


−




0 · · · 0
−a21 0

:
. . .

−an1 · · · −an,n−1 0


−




0 −a12 · · · −a1,n
:

0 −an−1,n

0 0




then Ax = b → Dx = (L+ U)x + b
x = D−1(L+ U)x+D−1b

∴ xk+1 = D−1(L+ U)xk +D−1b k = 0, 1 . . .
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Jacobi Algorithm

input: n, aij , bi ; Xi ,TOL, NMAX (maximum number of iterations)

output: approximation of x or failure.

Step 1 k = 1

Step 2 While (k ≤ NMAX) do 3− 6

Step 3 for i = 1 . . . n

xi = −
n∑

j=1
j 6=i

aijXj + bi/aii

Step 4 if ||x−X|| < TOL then output (x1 . . . xn) STOP

Step 5 k = k + 1

Step 6 for i = 1 . . . n set Xi = xi

Step 7 output (‘Max iterations exceeded’)

END

✷

Note aii = 0 must be avoided by re-ordering A. To speed up convergence aii
should be as large as possible.

Can use
||x(k) − x(k−1)||
||x(k)|| < TOL in step 4 for stopping, also, might want to

also examine ||b− Ax(k)||. Usually the sup-norm is used.

Gauss-Seidel Method

A variant of Jacobi:

Look at (68) and use

x
(k)
i =

−
∑i−1

j=1(aijx
(k)
j )−

∑n
j=i+1(aijx

k−1
j ) + bi

aii

for each i = 1, 2, . . . , n.

So, since

x
(k)
i are to to be computed and these use x(k−1). why not use
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x
(k)
1 · · ·x

(k)
i−1 which are likely better approximation than

x
(k−1)
i · · ·x(k−1)

i−1 , so use these the (k) values whenever these become available.

Compactly, Gauss-Seidel is (D − L)x(k) = Ux(k−1) + b

For D − L to be non-singular it is necessary and sufficient that aii 6= 0.

Gauss-Seidel Algorithm

Same input/output as Jacobi.

Step 1 k = 1
Step 2 While (k ≤ NMAX) do 3− 6
Step 3 for i = 1 . . . n

xi =

[
−

i−1∑

j=1

aijxj −
n∑

j=i+1

aijXj + bi

]
/aii

Step 4, 5, 6, 7 same as Jacobi.

✷

Remark: There are systems for which Jacobi converges and Gauss-Seidel
doesn’t, and vice versa.

General Theory of Iterative Methods

Let’s study methods of the form

x(k) = Txk−1 + c, k = 1, 2, · · ·
x(0)the initial guess.

To study convergence we recall the following fact:

Lemma If ρ(T ) < 1⇒ (I − T )−1 exists and

(I − T )−1 = I + T + T 2 + · · ·(69)

Proof: if λ is an eigenvalue of T then 1 − λ is an eigenvalue of I − T . Since
|λ| ≤ ρ(T ) < 1, therefore, no eigenvalue of (I − T ) is zero and I − T is
nonsingular.
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Let Sm = I + T + T 2 + . . .+ Tm. Thus, (I − T )Sm = I − Tm+1. This is true
for any matrix T .

Since T (i.e. limn→∞ T n = 0 is convergent then

lim
m→∞

(I − T )Sm = lim
m→∞

(I − Tm+1) = I

∴ lim
m→∞

Sm = (I − T )−1

To prove that limn→∞ T n = 0 is not so simple. However, the following fact
is illuminating: assume that ρ(T ) ≥ 1, then, from the eigenvalue problem

Tmx = λmx

(here, x 6= 0) it is clear that it is not possible that Tm → 0 as m → ∞, as
that would imply that Tmx→ 0. ✷

Corollary Let T as above and ‖T‖ < 1, then (I − T )−1 exists and has the
geometric series expansion (69). Moreover,

‖(I − T )−1‖ ≤ 1

1− ‖T‖ .

Proof: use the above theorem ✷ Remark: the above results go over to
operators in Banach spaces. It is a useful result and one to remember.

Theorem x(0) ∈ Rn, the
{
x(k)
}∞
k=0

defined by

x(k) = Tx(k−1) + c, k ≥ 1 c 6= 0

converges to the unique solution of

x = Tx+ c

if and only if ρ(T ) < 1.

Proof: Use induction to get x(k) = T kx(0) + (T k−1 · · ·T + I)c.

If ρ(T ) < 1⇒ lim
k→∞

T kx(0) = 0.

Use previous Lemma and show that x− x(k) = 0 as k →∞. ✷

Corollary If ||T || < 1 in some induced norm ⇒
{
x(k)
}

converges for any

x(0) ∈ Rn to x ∈ Rn and
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(i) ||x− x(k)|| ≤ ||T ||k||x0 − x||

(ii) ||x− x(k)|| ≤ ||T ||k
1−||T || ||x1 − x(0)||

✷

Theorem: If A is strictly diagonal dominant then for any x(0) Jacobi and
Gauss-Seidel converge to the unique solution of Ax = b

Remark: Which method to pick? Since ||x(k) − x|| ≈ ρ(T )k||x(0) − x||
choose method that gives smallest ρ(T ) < 1.

For arbitrary systems? No general result regarding which is faster. Some
guidelines:

Theorem: If aij ≤ 0 for each i 6= j and aii > 0, i = 1, 2 . . . then 1 and only
1 of the following statements holds:

(a) 0 ≤ ρ(TG) < ρ(TJ) < 1

(b) 1 < ρ(TJ) < ρ(TG)

(c) ρ(TJ) = ρ(TG) = 0

(d) ρ(TJ) = ρ(TG) = 1

where TJ is the matrix resulting from Jacobi and TG the matrix resulting
from Gauss-Seidel.

✷

Definition: let x̃ ∈ Rn be approximation to x of solution to Ax = b. Let
r = b− Ax.

In Gauss-Seidel x
(k)
i = (x

(k)
1 ,x

(k)
2 · · ·x

(k)
i−1,x

(k−1)
i ,x

(k−1)
i+1 , . . . ,x

(k−1)
n )T

define: r
(k)
i = (r

(k)
1i , r

(k)
2i , . . . r

(k)
ni )

T .

The mth component of r
(k)
1 ’s

r
(k)
mi = bm −

i−1∑

j=1

amjx
(k)
j −

n∑

j=i+1

amjx
(k−1)
j − amix

(k−1)
i ,(70)
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for each m = 1, 2, . . . , n. In particular,

r
(k)
ii = bi −

i−1∑

j=1

aijx
(k)
j −

n∑

j=i+1

aijx
(k−1)
j − aiix

(k−1)
i ,

So

aiix
(k−1)
i + r

(k)
ii = bi −

i−1∑

j=1

aijx
(k)
j −

n∑

j=i+1

aijx
(k−1)
j(71)

but Gauss-Seidel:

x
(k)
i =

1

aii

[
bi −

i−1∑

j=1

aijx
(k)
j −

n∑

j=i+1

aijx
(k−1)
j

]
(72)

So (12.3.2) can be written as

aiix
(k−1)
i + r

(k)
ii = aiix

(k)
i

therefore Gauss-Seidel can be characterized as choosing x
(k)
i to satisfy

x
(k)
i = x

(k−1)
i +

r
(k)
ii

aii
,(73)

wherein we want to reduce the size of rii to zero. Another connection: Con-
sider rki+1 associated with

x
(k)
i+1 = (x

(h)
1 , . . . x

(k)
i , x

(k−1)
i+1 , . . . , x

(k−1)
n )T . By (70)

r
(k)
i,i+1 = bi −

i∑

j=1

aijx
(k)
j −

n∑

j=i+1

aijx
(k−1)
j

= bi −
i−1∑

j=1

aijx
(k)
j −

n∑

j=i+1

aijx
(k−1)
j − aiix

(k)
i

Equation (72) implies that r
(k)
i,i+1 = 0. In this sense Gauss-Seidel is also

characterized by requiring that the ith component of r
(k)
i+1 be zero.
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Reducing one coordinate of the residual to zero is not generally the most
efficient way to reduce the norm of r

(k)
i+1. Instead:

Modify (72):

x
(k)
i = x

(k−1)
i + ω

r
(k)
ii

aii
“Relaxation Method”

0 < ω

For 0 < ω < 1 we get “under-relaxation”. Can use to get convergence for
some choices where Gauss-Seidel fails to converge.

1 < ω we get “over-relaxation”. Use to obtain faster convergence when
Gauss-Seidel converges. So this can be codified in another method:

Successive Over Relaxation (SOR)

x
(k)
i = (1− ω)x

(k−1)
i +

ω

aii
[bi −

i−1∑

j

aijx
(k)
j ] = (1− ω)aiix

k−1
i − ω

n∑

j=i+1

aijx
(k−1)
j + ωbi,

Or more compactly,

xk = (D − ωL)−1[(1− ω)D + ωU ]︸ ︷︷ ︸
Tω

xk−1 + ωb.

How do we choose ω? No clear way. However:

Theorem: if aii 6= 0 for i = 1, . . . , n, then ρ(Tω) ≥ |ω−1|, therefore ρ(Tω) < 1
only if 0 < ω < 2 , where

Tω = (D − ωL)−1[(1− ω)D + ωU ]

✷

Theorem: if A positive definite and O < ω < 2 then SOR converges for any
x(0).

✷

Theorem: If A positive definite tridiagonal then ρ(TG) = [ρ(TJ )]
2 < 1. Then,

the optimal choice ω for SOR is

ω =
2

1 +
√

1− ρ(TG)
=

2

1 +
√
1− ρ(TJ)2

.
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Then ρ(Tω) = ω − 1

✷

SOR Algorithm:

Input: Same as before and the parameter ω

Output: x

Step 1 k = 1
Step 2 While (k ≤ NMAX) do 3 - 6
Step 3 for i = 1, . . . , n

xi = (1− ω)Xi +
ω
(
−
∑i−1

j=1 aijxj −
∑n

j=i+1 aijXj + bi

)

aii
Step 4 if ||x−X|| < TOL, output x,END
Step 5 k = k + 1
Step 6 for i = 1, . . . , n Xi = xi

Step 7 FAIL MESSAGE, STOP.
END

✷

Another look at convergence of iterative methods:

We write Jacobi, Gauss-Seidel, SOR as

x(n+1) = Tx(n) + c

The error at the nth step is e(n+1) = x− x(n) where x is the solution of
Ax = b.

Hence e(n+1) = Te(n)

Using inductions e(n) = T ne(0)

The sequence x(1),x(2), · · · , x(n), · · · will converge to x as n tends to infinity
is limn→∞n e(n) = 0.

Assume T is an m×m matrix. Assume it has m linearly independent eigen-
vectors vs; s = 1, 2 · · ·m and write

e(0) =
m∑

s=1

csvs , where csare scalars. Hence,
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e(1) = Te0n =
m∑

s=1

csλsvs

where λs are the eigenvalues of T .

Similarly,

e(n) =

m∑

s=1

csλ
n
svs

Therefore e(n) tends to the null vector as n → ∞ for any e(n) if and only if
|λs| < 1 for all s. Therefore the iteration converges if ρ(t) < 1. As a corollary
a sufficient condition for convergence is that ||T || < 1 because ρ(T ) ≤ ||T .

The Eigenvalues of the Jacobi and Gauss Seidel and SOR Iterations Matrices

Assume that the m linear equations

Ax = b

are such that the matrix A = D − L − U is nonsingular and has nonzero
diagonal elements aii i = 1, 2, · · · , m.

Jacobi Iteration

The eigenvalues µ of the Jacobi iteration T ≡ D−1(L+ U) are roots of

det[µI −D−1(L+ U)] = detD−1(µD − L− U)

= detD−1 det(µD − L− U) = 0

where detD−1 = 1/ detD = 1/a11a22 · · · amm 6= 0.

Hence det(µD − L− U) = 0

SOR iteration and Gauss-Seidel Iteration

The T ≡ (I −WD−1L)−1
{
(1− w)I + wD−1U

}

for which the eigenvalues λ are roots of det(λI − T ) = 0.

Now λI − T = λ(I −WD−1L)−1(I −WD−1L)− (I −WD−1L)−1
{
(1− w)I + wD−1U

}

= (I −WD−1L)−1
{
λ(I − wD−1L)− (1− w)I − wD−1U

}

= (I − wD−1L)−1D−1 {(λ+ w − 1)D − λwL− wU}
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Therefore

det(λI − T ) = det
{
(λ+ w−1)0− λwL− wU

}
/ det(I − wD−1L) detD

but det(I −WD−1L) = determinant of a unit lower triangular matrix = 1.

Also detD = a11a22 · · · amm 6= 0

Hence the eigenvalues λ are roots of

det {(λ+ w − 1)D = λwL− wU} = 0

This result holds for any set of linear equations satisfying detA 6= 0 and
detD 6= 0. The eigenvalues λ of the Gauss-Seidel are given by setting w =
(i.e. they are the roots λ of det(D − λL− U) = 0.

✷

Iterative Refinement One would think that if x̃ is approximate to x of Ax = b
and r = b−Ax, then if ||r|| is small then ||x− x̃|| is small. However, this is
not always the case. Consider

Example [
1 2 | 3
1.0001 2 | 3.0001

]
.

It has a unique solution x = (1, 1)T . Now, take x̃ ≡ (3, 0)T . We compute
||r||∞ = 0.0002. Although small, x̃ is a poor approximation to x, i.e. ||x−
x̃||∞ = 2.

✷

Theorem: Suppose A is nonsingular and x̃ approximation to x, the solution
to Ax = b, then ||x− x̃|| ≤ ||A−1|| ||r|| and ||x−x||

||x|| ≤ κ(A) ||r||
||b|| , where κ(A) is

the condition number for the matrix A.

✷

So, using the above example, ||A||∞ = 3.001, and

A−1 =

[
−10000 10000
5000.5 −5000

]

||A−1||∞ = 20000 and κ(A) = 60002.
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Note: Since r = b−Ax̃ = Ax−Ax̃, then ||b|| ≤ ||A||||x||, then b(x− x̃) =
AxA−1r.

✷

Remark: There are iterative refinement techniques for ill-conditioned sys-
tems. We don’t cover this here, but the basic idea is this: we solve Ay = r
iteratively, with r = b−Ax.

where x ≈ x̃+ ỹ till we get a better y.

Then solve for x̃

✷

12.3.3 Ill-conditioning and Finite Precision Errors

So far we’ve assumed A,x,b are represented exactly on a machine. However,
what we really might have on a machine is

(A+ δA)x = b+ δb, instead of Ax = b.

If ||δA|| and ||δb|| are small, for example, O(10−t), where t is large, then no
problem. There are errors, but these do not propagate due to the iteration.

Suppose A is ill-conditioned. In this case, no matter how small these pertur-
bations to A and b are, the errors will propagate, sometimes to disastrous
proportions, especially if the size of the matrix is large:

Theorem: If A is nonsingular and ||δA|| < 1
||A−1|| then the solution x̃ to

(A+ δA)x̃ = b+ δb approximates Ax = b with error

||x̃− x||
||x|| ≤ κ(A)

1− κ(A)(||δA||/||A||)

( ||δb||
||b|| +

||δA||
||A||

)
.

Therefore, if A is well-conditioned κ(A) is small and perturbations in A and
b produce small changes in x and vice versa.

✷

Remark: This is a result that is method-independent.
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Example

Wilkinson found that for Gaussian Elimination with pivoting in t-digit arith-
metic: the problem that was really being solved is

(A+ δA)x = b

where the perturbation ||δA||∞ ≤ f(n)101−tmaxi,j |aij |. Furthermore, he
found that f(n) ≈ n and at worst f(n) = 1.01(n3 + 3n2).

✷

12.3.4 The Conjugate Gradient Method

There are a number of extremizing techniques for the solution of linear and
nonlinear algebraic problems. Among the most general techniques are the
“Quasi-Newton” methods (you will find codes for these at netlib). These
are fairly efficient and when contractive-mapping restrictions are met, they
are fairly robust. A very popular quasi-Newton technique is known as the
Broyden Method, and the Variable Metric Broyden (such as the BFGS).

Here we consider a “Steepest Descent” method, aimed at solving linear alge-
braic problems. In steepest descent methods we construct a functional which
when extremized will deliver the solution of the problem in question. The
functional will have convexity properties, so that the vector which extrem-
izes the functional is the solution of the algebraic problem in question. This
means that we search for the vector for which the gradient of the functional is
zero, and this can be done in an iterative fashion. A special steepest descent
method, appropriate for the solution of the linear algebraic problem is called
the “Conjugate Gradient” Method. We feature it next.

We want to solve

Ax = b x ∈ Rn,b ∈ Rn, A ∈ Rn×n.(74)

Suppose A is symmetric positive definite

{
AT = A
xTAx > 0, x 6= 0.

Lemma: If A is symmetric positive definite then solving Ax = b is equivalent
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to problem of minimizing the quadratic form

f(x) =
1

2
xTAx− xTb

where f ∈ Rn. The minimum is reached when x = A−1b.

✷

f is differentiable, and in fact

−∇f(x) = −Ax + b.

So looking for an extrema of f means solving for −∇f = 0. Moreover,
∇2f = A, and since ‖A‖ > 0 then the extrema is a minima.

Hence, we recast the problem of finding a solution of the (74) as the opti-
mization problem: find x̂ such that

f(x̂) = min
x∈Rn

f(x),

which is equivalent to finding x̂ the solution of (74). Next we observe that

f(x) =
1

2
(x− x̂)TA(x− x̂)− 1

2
x̂TAx̂

and minimization is the same as that of

f̂ ≡ 1

2
(x− x̂)TA(x− x̂)(75)

since f and f̂ differ by a constant independent of x. But minimizing f̂ is
nonsensical since it involves x̂ the unknown in the computation.

However, since

A(x− x̂) = (Ax− b)− (Ax̂− b) = r

where r(x) ≡ Ax− b. Note that r(x̂) = 0. Thus

f =
1

2
rTAr

and it is clear then that

−∇f = b− Ax = r.
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Next, we recast the minimization as an iterative map: use k as the iteration
counter and let

x(k+1) = x(k) + αk+1pk+1

which is called a line search, along the direction pk+1. Here α is the search
parameter and is used to minimize the functional f(x(k)+αk+1pk+1) along the
direction pk+1. This would be somewhat daunting in many space directions,
however, we can find α analytically: the minimum αk+1 occurs when the new
residual is orthogonal to the search direction:

0 =
d

dαk+1
f(x(k+1)) = ∇f(x(k+1))T

d

dαk+1
x(k+1)

= (Axk+1 − b)T (
d

dαk+1
(x(k) + αk+1pk+1)) = −rTk+1pk+1.

The new residual can be expressed in terms of the old residual:

rk+1 = b− Axk+1

= b− A(x(k) + αk+1pk+1)

= b− Axk − αk+1Apk+1

= rk − αk+1Apk+1.

Thus, solving,

αk+1 =
rTk r

pT
k+1Apk+1

.

So we know how to get α and we can find p by the requirement that it has
to be orthogonal to r. But how do we find pk+1 at each iterate k?

To proceed, we need to make the following definition:

A-Conjugate vectors:

A set of non-zero vectors p1,p2, . . . ,pn ∈ Rn is said to be A-conjugate if

δij = pT
i Apj , 1 ≤ i, j ≤ n.(76)

The pj are called “conjugate directions.” Condition (76) is equivalent to
requiring that p1,p2, . . . ,pn be an orthogonal basis for Rn with respect to
the inner product (·, ·)A. Hence they are an A-conjugate complete set have
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linearly independent vectors. Also, (75) is no more than the norm 1
2
|| · ||2A,

i.e.

f̃(x) =
1

2
‖x− x̃‖2A.

Take

x(k) = x(k−1) + αkpk,(77)

k = 0, 1, . . .. Suppose we start (77) with x(0) = 0. We can always do this:
to see this, let Az = b−Ax(0) with solution z∗, then x∗ = x0 + z∗ hence an
initial guess z(0) = 0 corresponds to x(0) = x0 in the original problem.

Express

x̃(k) =

n∑

j=1

αjpj ,

there solution of Ax = b. Multiply both sides of this equation by A and
then by pk+1, then using orthogonality

αk+1 =
pT
k+1Ax̃

pT
k+1Apk+1

=
pT
k+1Ab

pT
k+1Apk+1

, k = 0, 1, 2, . . . n− 1.

Note that when k = n, xn = x̃ and rn = 0. Hence, minimization requires at
most n iterations. The rate, as we shall state later, depends on the eigenvalues
of A.

The conjugate gradient method gives a way to generate {pk} and {xk}: Note
that r0 = b, if x0 = 0, and that rk is orthogonal to pi, i = 1, 2, . . . , n, i.e.

rTkApi = δk,i.

Starting with p1 = b the conjugate gradient is then:

αk+1 = rTk rk/p
T
k+1Apk+1 k ≥ 0

x(k+1) = x(k) + αk+1pk+1 k ≥ 0
βn+1 = rTk rk/r

T
k−1rk−1 k > 0

pk+1 = rk + βk+1pk k > 0
rk+1 = b− Ax(k+1) k ≥ 0

The iterates converge to solution of Ax = b in at most n iterations!
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✷

Example Solve Ax = b with

A =




2 −1 0
−1 2 −1
0 −1 2


 b =




1
0
1




by the conjugate gradient method.

Let x(0) = 0, then r0 = p1 = b = [1 0 1]T .

Form rT0 r0 = 2 so

pT
1Ap1 = [1, 0 1][aij]




1
0
1


 = 4

Therefore α1 = rT0 r0/p
T
1Ap1 = 0.5 and

x(1) = x(0) + α1p1 =




0.5
0.0
0.5




For the next iteration r1 = b− Ax(1) =




0
1
0




β2 = rT1 r1/r
T
0 r0 =

1

2
= 0.5 ∴

p2 = r1 + β2p1 = [0.5 1.0 0.5]T

∴ pT
2Ap2 = 1 ⇒ α2 = 1 and

x(2) = x(1) + α2p2 = [1 1 1]T

the residual r2 = 0 and x(2) is the solution. ✷

A conservative estimate of the rate of convergence of the conjugate gradient
method is

‖x− x̃‖A ≤ 2

[
1−√c
1 +
√
c

]
‖x̃‖A.
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Here, c = λ1/λn, where 0 < λ1 ≤ λ2... ≤ λn are the eigenvalues of A. Also,
note that c is the reciprocal of the condition number of A, estimated using
the L2-norm.

Remark: For ill-conditioned A, the Conjugate Gradient Method is very slow.

What to do?

Remark: For ill-conditioned A, the Conjugate Gradient Method is very slow.

What to do?

Preconditioning Take
Ax = b

and it turn into
By = d.

where
B = QTAQ , y = Q−1x and d = QTb.

To choose Q: pick nonsingular matrix in such a way so that κ(B) < κ(A),
i.e. the condition of B is smaller than A’s.

Careful analysis is required to choose a Q.

In some cases, for the preconditioned conjugate gradient method, one could
reduce convergence cost to O(

√
n).

Remark: In preconditioned Conjugate Gradient the recast By = d is actually
not computed or used. There is a modification that allows us to use the above
discussed conjugate gradient method (see reference to Gollub and van Loan.

✷

Comparison of Convergence of Jacobi 12.3.2, Gauss-Seidel 12.3.2, SOR 12.3.2,
and Conjugate Gradient 12.3.4. Let’s do it in the context of solving the
linear-algebraic problem related to the “Poisson Problem” for v(x, y) which
is considered in detail under Elliptic Problems

∆v = f(x, y)

over some domain in the 2D-plane x, y, with suitable boundary conditions
at the edges of the domain using the 3 (in 1D) or 5 point stencil. Using the
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3 or 5 point stencil and finite-difference techniques, it is possible to turn the
problem of solving approximately the above partial differential equation into
a linear-algebraic equation

Az = b

where z is the vector representing vxi,yj , with i, j = 1, 2, ...n, say, where
(xi, yj) represents the 2D lattice that results from the finite-differencing using
n grid points in x and y.

So to solve the “Poisson Problem” amounts to solving the linear algebraic
problem stated above.

Define the spectral radius of the Jacobi case as ρ(AJ) (see 11.2).

ρ(AJ ) ≈ 1− a

n
as n( number of unknowns)→ grows ρ→ 1.

Since the error is multiplied by
ρ⇒ convergence slows down.

k iterations ≈ O(n) to reduce error by e−1.

Let ρ(AGS) be the spectral radius for the Since ρ(AGS) = ρ2(AJ)⇒ 1 Gauss-
Seidel can decrease as much as Jacobi. Now, let ρ(ASOR) be the spectral
radius for the SOR solution.

Then ρ(ASOR) ≈ 1− a′√
n

when optimal.

so SOR is approximately
√
n faster than either Jacobi or Gauss Seidel Meth-

ods. Now, The condition number for the Conjugate Gradient is κ = O(n).
Hence, after k steps in the Conjugate Gradient Method the residual is multi-
plied by about [1−O(√n)]k, same as optimal SOR, thus the CG takes about
O(√n).

✷
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13 NUMERICAL TECHNIQUES FOR EIGEN-

VALUES

The calculation of eigenvalues of matrices is a particularly tricky affair, es-
pecially for very large matrices. It is a very active area of current research.
Here we’ll introduce just a couple of classic methods: The Power Method,
and inverse iteration, QR. Another classic method that’s enjoying a revival is
Arnoldi Iteration, used in the estimation of eigenvalues of very large matrices.

13.1 The Power Method

Used to estimate the dominant eigenvalue and its corresponding eigenvector.

There’s two variants: the case when A (n× n matrix) has
{

n linearly independent eigenvectors
there’s a single dominant eigenvalue.

this one’s easy.

The second variant is not discussed here and considers the cases not covered
by above assumptions. This one’s complicated. See reference to Demmel et
al.

The first case: first, we order the eigenvalues

(i) |λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn|

(ii) There’s a basis
{
u(1), u(2), · · · , u(n)

}

for Cn such that

Au(i) = λiu
(i) (1 ≤ i ≤ n)(78)

Let x(0) be any element of Cn such that when x(0) is expressed as a linear
combination of the basis u(1), u(2), . . . , u(n)4 the coefficient of u(1) is not 0.
Thus,

x(0) = a1u
(1) + a2u

(2) + · · ·unu
(n) a1 6= 0(79)
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We form

x(1) = Ax(0),

x(2) = Ax(1),

· · ·
x(k) = Ax(k−1)

so that
x(k) = Akx(0)(80)

In what follows we’ll absorb all the coefficients aj in the vectors u(j) that
they multiply. Hence, write (79) as

x(0) = u(1) + u(2) + . . .+ u(n)(81)

by (81) we can write (80) as

x(k) = A(k)u(1) + A(k)u(2) + . . . Aku(n)

using (78)
x(k) = λk

1u
(1) + λk

2u
(2) + . . . λk

nu
(n)

rewrite this

x(k) = λk
1

[
u(1) +

(
λ2

λ1

k)
u(2) + . . .

(
λn

λ1

)k

u(n)

]
(82)

Since |λ1| > |λj| for 2 ≤ j ≤ n we see that the coefficients (λj/λ1)
k tend to

0 and the quantity in brackets converges to u(1) as k →∞.

Let’s write (82) as
x(k) = λk

1[u
(1) + ε(k)]

where ε(k) → 0 as k → ∞. In order to take ratios let θ be any linear
functional on Cn for which θ(u(1)) 6= 0. Note: θ(αx+ βy) = αθ(x) + βθ(y),
since linear, where α, β are scalars and x and y vectors. Then

θ(x(k)) = λk
1[θ(u

(1)) + θ(ε(k))]

∴ the following ratios converge to λ1 as k →∞:

rk ≡
θ(x(k+1))

θ(x(k))
= λ1

[
θ(u)(1) + θ(ε(k+1))

θ(u(1)) + θ(ε(k))

]
→ λ1
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✷

Remark: Since direction of x(k) aligns more and more with u(1) as k → ∞
the method also yields u(1) the eigenvector.

What to chose for θ? It can simply evaluate the jth component of any given
vector. In practice, the algorithm should normalize the x(k) otherwise they
may converge to 0 or become unbounded.

The algorithm goes like this:

input: n,A, x,m % here x is an initial guess

output: 0, x

do k = 1, m

y = Ax

r = θ(y)/θ(x)

x = y/||y|| % use sup-norm for example.

end

Relative error: Can show that, since lim
k→∞

rk = λ1,

rk − λ1

λ1

=

(
λ2

λ1

)k

ck

where the numbers ck form a bounded sequence.

Can also show:

rk+1 − λ1 = (c+ δk)(rk − λ1)

|c| < 1 and lim
k→∞

δk = 0

this implies rk converges linearly. Using this knowledge one can accelerate
the procedure:

Theorem (Aitken Acceleration): Let {rn} be a sequence of numbers that
converges to a limit r, then the sequence

sn =
rnrn+2 − r2n+1

rn+2 − 2rn+1 + rn
n ≥ 0
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converges to r faster if rn+1−r = (c+δn)(rn−r) with |c| < 1 and lim
n→∞

δn = 0.

Indeed, (sn − r)/(rn − r)→ 0 as n→∞.

✷

13.2 Inverse Power Method

We know that if λ is an eigenvalue of A and if A is nonsingular then λ−1 is
an eigenvalue of A−1.

This suggests a way to estimate the smallest eigenvalue of A using the power
method: arrange eigenvalues as

|λ1| ≥ |λ2| ≥ . . . ≤ |λn−1| > |λn| > 0

can be done since A is non-singular, 0 is not an eigenvalue. The eigenvalues
of A−1 arranged:

|λ−1
n | > |λ−1

n−1| ≥ · · · ≥ |λ−11
1 > 0

∴ Apply power method to A−1. But we don’t compute A−1. Instead solve

Ax(k+1) = x(k)

for x(k+1) by some efficient linear algebra solver. One could consider an LU
factorization, since it only has to be done only once.

These two suggest a way to find the eigenvalue farthest to a given value µ.
The “Shifted Matrix Power Method,” here µ is complex generally: the trick
is to construct a matrix

Â = (A− µI)

and then use the regular power method on Â, i.e.

x(k+1) = Âx(k)

Finally, we could consider the eigenvalue closest to µ. In this case we apply
the inverse power method on Â, i.e.

Âx(k+1) = x(k)

✷
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13.3 The Rayleigh-Ritz Method:

If A is symmetric one can use an old, but efficient method. Note that eigen-
values and eigenvectors of A are real.

The power method can be also rigged up to find a series of eigenvalues:
the idea is to remove the eigenvalues once these are found. This is called
“DEFLATION” and must be used with caution since round off becomes ever
more significant. ✷

13.3.1 Rayleigh-Ritz, Background:

Let’s consider more generally the case for A an n× Hermitian matrix and
x is an n−dimensional vector. We indicate “hermitian” as †, which means
that the complex conjugate of the transpose of A is the same as A. So, for
short, A† = A. If A is a real matrix, AT = A. These matrices often arise
from self-adjoint continuous operators which model some physical process.
The complex version appears often in the context of quantum mechanics and
acoustics.

We will indicate by an overbar the operation of taking the conjugate trans-
pose. If A and x were real, this operation would simply involve the transpose.

Since A† = A the eigenvalues are real and can be organized as

λmin ≡ λ1 ≤ λ2 ≤ λ3 · · · ≤ λn ≡ λmax.

We will see that the smallest and largest eigenvalues may be thought of as
the solution to a constrained minimum and maximum problem.

Theorem (Rayleigh-Ritz): Let A as above and the eigenvalues ordered as
above. Then

λ1xx ≤ xAx ≤ λnxx, for allx ∈ Cn.

Furthermore,

λmax = max
x 6=0

xAx

xx
= max

|x|2=1
,

and

λmin = min
x 6=0

xAx

xx
= min

|x|2=1
.
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Proof: Since A = A† then there exists a unitary matrix U such that A =
UΛU †, with Λ = diag(λ1, λ2, . . . , λn). For any x ∈ Cn we have

xAx = xUΛU †x = (U †x)†Λ(U †x) =
n∑

i=1

λi|(U †x)i|2.

Since |(U †x)i|2 is non-negative, then

λmin

n∑

i=1

λi|(U †x)i|2 ≤ xAx =

n∑

i=1

λi|(U †x)i|2 ≤ λmax

n∑

i=1

λi|(U †x)i|2.

Because U is unitary

n∑

i=1

λi|(U †x)i|2 =
n∑

i=1

|xi|2 = xx.

Hence,
λ1xx = λminxx ≤ xAx ≤ λmaxxx = λnxx.

These are sharp inequalities. If x is an eigenvector of A associated with λ1,
then

xAx = λ1xx.

Same sort of argument holds for λn.

Furthermore, if x 6= 0 then
xAx

xx
≤ λn.

so

max
x 6=0

xAx

xx
= λn.(83)

Finally, since x 6= 0, then

xAx

xx
=

x√
xx

A
x√
xx

and
x√
xx

x√
xx

= 1.
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Hence, (83) is equivalent to

max
|x|2=1

xAx = λn.

Same sort of arguments hold for λ1, in the context of the minimum. ✷

Algorithm

Now we will revert to the case of A an n× n symmetric real matrix for the
presentation of the algorithm.

Let x be an n−dimensional real vector. Choose some initial guess x(0), and
compute

x(m+1) = Ax(m)

then

λ
(m+1)
1 =

(xm+1, x(m))

(x(m), x(m))
m ≥ 0

where (w, z) =
∑n

i=1wizi w, z ∈ Rn is the inner product.

In fact, by writing x(m) =
∑n

j=1 α
(m)
j uj then

λ1 =

∑n
j=1 |α

(m+1)
j |2λ2m+1

j∑n
j=1 |α

(m)
j |2λ2m

j

hence, it is easy to see that

λ
(m+1)
1 = λ1

[
1 +O

([
λ2

λ1

]2m)]
,

which is quadratic convergence, an improvement over the previous method.
✷

13.4 The QR Method

For reasonably-sized matrices, this is the most efficient and widely used
method. There’s very good code on NETLIB EISPACK to do this. For
large matrices, people are loading into Arnoldi methods (see Lehoucq). This

266



method appeared in 1961 (Francis). Here’s an elementary introduction.
Given A, there’s a factorization

A = QR ,

R is upper triangular and Q orthogonal. With A real both Q,R are cho-
sen real. The motivation is that we’ll construct an iterative technique to
find the eigenvalues using similarity transformations. Orthogonal matrices
accomplish the transformations in such a way that they will not worsen the
condition number or stability of the eigenvalue of a non-symmetric to matrix.
A special class of orthogonal matrices is known as “Householder Matrices”
and we’ll concentrate on these.

Note: The term “orthogonal matrix” should be restricted to real matrices.
However, usage of the term has extended to complex matrices. But in the
complex case the matrices should be understood as being “Unitary.”

Let w ∈ Cn with ||w||2 =
√
w⋆w = 1. Define

U = I − 2ww⋆(84)

this is the general form of a “Householder Matrix”

Example) For n = 3

w = [w,w2, w3]
T |w1|2 + |w2|2 + |w3|2 > 1

U =




1− 2|w1|2 −2w1w2 −2w1w3

−2w1w2 1− 2|w2|2 −2w2w3

−2w1w3 −2w2w3 1− |w3|2




✷

U is Hermitian: U † = (I − 2ww⋆)† = I+ − 2(ww⋆)†

= I − (2w⋆)⋆w⋆ = I − 2ww⋆ = U

U is orthogonal: U †U = U2 = (I − 2ww⋆)2 = I − 4ww⋆ + 4(ww⋆)(ww⋆) = I
because w⋆w = 1 and the association law applies, then

(ww⋆)(ww⋆) = w(w⋆w)w⋆ = ww⋆

✷
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The QR Factorization of a Matrix

A = QR.

Take A ∈ Cn×n. Let Pr = I − 2w(r)w(r)† r = 1, · · · , n− 1, where † indicates
adjoint.

It turns out that we want to enter zeros in the definition of the w’s:

w(r) = [0, 0, · · · , 0, wr, · · · , wn]
T ≡ [Or−1, ŵ

T ]Twith ŵ ∈ Cn−r+1(85)

Writing A in terms of its columns A⋆1, · · ·A⋆n we have

P1A = [P1A⋆1, . . . , P1A⋆n].

Pick P1 and w(1) using the following construction: we want to use the House-
holder matrix to transform a nonzero vector into a new vector containing
mainly zeros. Let b 6= 0 be given, b ∈ Cn and suppose we want to produce
U of the form such that Ub contains zeros in positions r + 1 through n, for
some r ≥ 1. Choose w as in (85). Then the first r− 1 elements of b and Ub
are the same.

Let’s write m ≡ n− r + 1

so we take w =

[
Or−1

v

]
and(86)

A⋆1 =

[
c
d

]
(87)

c ∈ Rr−1 and v, d ∈ Rm. Then our restriction on the form of Ub requires the
r − 1 components of Ub and c be same, and

(I − 2vvT )d = [α, 0, 0 . . . 0]† ||v||2 = 1(88)

for some α. Since I − 2vvT is orthogonal, the length of d is preserved ∴

|α| = ||d||2 ≡ S

α = ±S = ±
√

d21 + d22 · · ·+ d2m(89)

Let
p = vTd
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from (88)
d− 2pv = [α, 0, . . . , 0]T(90)

Multiplication by vT and use of ||v||2 = 1 implies

p = −αv1(91)

Substituting this into the first component of (90) gives

d1 + 2αv21 = α

∴ v1 =
1

2

[
1− d1

α

]

Choose sign of α in (89) by

sign (α) = −sign(d1)

This choice maximizes v21 and avoids loss of significance errors in calcula-
tion of v1. Having v1, obtain p from (91). Return to (90) and then using
components 2−m

vj =
dj
2p

j = 2, 3, · · · , m.

Once v is obtained ⇒ w and U are obtained. The operation count can be
shown to be O((2m+ 2)). ✷

Now P1A contains zero below the diagonal in its first column. Choose P2

similarly, so that P2P1A contains zeros in its second column below diagonal.
Note that P1A and P2P1A have same elements in row 1 and column 1. So
to get P2 and w(2) replace A⋆1 in (87) by second column of P1A. Continue
procedure till we obtain an upper triangular matrix

R ≡ Pn−1Pn−2 · · ·P1A.

If at the r-step of procedure all elements below diagonal of column r are zero
then choose Pr = I and go to next step. To complete the construction let

QT = Pn−1Pn−2 · · ·P1

which is orthogonal. Then A = QR. ✷

Now that we know how to obtain a QR factorization we return to getting
the eigenvalues:
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Assume A is real ⇒ Q,R can be found to be real. Let A1 = A and define a
sequence

Am = QmRm

Am+1 = RmQm

m = 1, 2, · · ·

Since Rm = QT
mAm ⇒

Am+1 = QT
mAmQm

Am+1 is orthogonally similar to Am, Am−1 · · ·A1. The sequence {Am} will
converge either to a triangular matrix with the eigenvalues of A on its di-
agonal or to a near-triangular matrix from which the eigenvalues can easily
be calculated. This is slow but a “shifting” technique accelerates things
considerably (not discussed here).

✷

Remark: QR is very expensive even with shifting. So the first step is to “pre-
pare” the matrix by making it simpler. If A is symmetric it can be reduced to
a similar symmetric tridiagonal matrix. If not symmetric, it can be reduced
to its equivalent “Hessenberg Matrix” by unitary similarity transformations.
An “upper Hessenberg Matrix” by unitary similarity transformations. An
“upper Hessenberg” matrix has the form:

H =




⋆ ⋆ − − − ⋆ ⋆
⋆ :
0 ⋆ :

0 ⋆ :
: 0 ⋆ :

0 ⋆ ⋆⋆
0 0 ⋆⋆




i.e. hij = 0 when 1 > j + 1.

Note that if A is tridiagonal it is also Hessenberg. However, if A is tridiagonal,
an efficient way to calculate its eigenvalue is by using “Sturm sequences.”
(See Golub and VanLoan)

Convergence of QR: Let A be real n× n and eigenvalues {λi}

|λ1| > |λ2| · · · |λn| > 0(92)
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then the iterates Rn of QR method will converge to an upper triangular
matrix D with {λi} as diagonal elements. If A is symmetric, the sequence
{Am} converges to a diagonal matrix. For the rate of convergence

||D − Am|| ≤ cmax
i
|λi+1

λi

|

For matrices with eigenvalues not satisfying (92), the iterates Am may not
converge to a triangular matrix. For A symmetric the sequence {Am} con-
verges to a block diagonal matrix.

Am → D =




B1 0
B2

. . .

0 Br




in which Bi are simple elements or 2×2 matrices. Thus the eigenvalues of A
can be easily computed from those of D. For A non-symmetric, the situation
is more complicated but still acceptable.

✷

13.5 Inverse Iteration

To find eigenvectors.

Suppose A has a Jordan canonical form which is diagonal.

P−1AP = diag [λ1, λ2, . . . , λn]

Let the columns of P be denoted by x1, x2, . . . , xn. Then

Axi = λixi i = 1, 2, . . . , n.

Assume ||xi||∞ = 1 (can always be done). Let λ be an approximation to a
simple eigenvalue λk of A. Given an initial z(0), define {w(m)} and {z(m)} by

(A− λI)w(m+1) = z(m)

z(m+1) =
w(m+1)

||w(m+1)||∞
m ≥ 0.
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Note: Here we want λ to be a “poor” guess of λk, since otherwise we get a
severely ill-conditioned matrix A− λI! So choose a “close” value.

More precisely: let

z(0) =

n∑

i=1

αixi, αk 6= 0.(93)

from the power method:

z(m) =
σm(A− λI)−mz(0)

||(A− λI)−mz(0)||∞
(94)

(95)

|σm| = 1 i.e. either ± 1.(96)

substituting (93):

(A− λI)−mz(0) =
n∑

i=1

αi[
1

λi − λ
]mxi(97)

let λ1 − λ = ε and assume |λ1 − λ| ≥ c > 0 i = 1, 2, . . . , n i 6= k.

¿From (96) and (97)

z(m) = σm

xk + εm
∑

i 6=k
αi

αk
[ 1
λi−λ

]mxi

||xk + εm
∑

i 6=k
αi

αk
[ 1
λi−λ

]mx1||∞
.(98)

If |ε| < c then

||εm
∑

i 6=k

αi

αk

[
1

λi − λ
]mxi||∞ ≤

[ε
c

]m∑

i 6=k

|αi

αk

|

which tends to 0 as m → ∞, and with (98) shows that z(m) converges to a
multiple of xk. The convergence is linear, though. In its implementation, a
sensible thing to do is to LU -factorize A− λI.

✷
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14 DIFFERENCE EQUATIONS

Let V denote a set containing an infinite sequence of complex numbers. For
example,

x = [x1, x2, x3 · · ·] and
y = [y1, y2, y3 · · ·] are 2 elements of V.

V also contains 0 = [0, 0, 0 · · ·].

On V we define the 2 operations:

x+ y = [x1 + y1, x2 + y2, y3 + y3, . . .]

λx = [λx1, λx2, . . .]

compactly:

(x+ y)n = xn + yn

(λx)n = λxn.

If it scales, adds, has a 0 ⇒ V is an infinite-dimensional vector space. It is
spanned by

V 1 = [1, 0 · · ·]
V 2 = [0, 1, 0 · · ·]
V 3 = [0, 0, 1 · · ·]
...

definition: Linear operator: L : V → V

Example Displacement operator

let x = [x1, x2, x3, · · ·]
then Ex ≡ [x2, x3, x4, · · ·]
(Ex)n ≡ xn+1

(EEx)n = (Ex)n+1 = xn+2

(Ekx)n = xn+k
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✷

Example Linear Differential operator (with constant coefficients and finite
rank)

L =
m∑

i=0

ciE
i

E0 = is identity operator (E0x)n = xn

L is a polynomial in E; can write as powers in E:

L = p(E)

p(λ) =
m∑

i=0

ciλ
i characteristic polynomial.

Want to study Lx = 0

the set {x : Lx = 0} is a linear subspace of V .

It is called the NULL SPACE.

Lx = 0 is solved if we know a basis for the null space of L.

take c0 = 2 c1 = −3 c2 = 1

L = E2 − 3E1 + 2E0

Lx = (E2 − 3E1 + 2E0)x = 0

xn+2 − 3xn+1 + 2xn = 0 n ≥ 1

p(λ) =
2∑

i=0

ciλ
i = λ2 − 3λ+ 2

p(E)x = 0

Put xn = λn ⇒ λn − 3λn+1 + 2λn = 0

λn(λ2 − 3λ+ 2) = 0

characteristic equation: λn(λ− 2)(λ− 1) = 0 has solutions

[0, 0, 0 · · ·], vn = 2n and un = 1n. The first one is the trivial solution, the
other two are SIMPLE zeros.
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It turns out that u = un v = vn form a basis: To see this:

x = αu+ βv

xn = αun + βvn ∀n

if n = 1then

{
x1 = α + 2β
x2 = α + 4β

(99)

(99) determines α, β since det

∣∣∣∣
1 2
1 4

∣∣∣∣ 6= 0 (This is a Vandermode Matrix).

xn = 3xn−1 − 2xn−2

= 3(αun−1 + βun−1)− 2(αun−2 − βvn−2)

= α(3un−1 − 2un−2) + β(3vn−1 − 2vn−2)

= αun + βvn

THIS WORKS WHEN CHARACTERISTIC EQUATION HAS SIMPLE
ZEROS.

Theorem: If p is the characteristic polynomial and λ is a zero of p ⇒ one
solution of p(E)x = 0 is [λ, λ2, λ3 · · ·]. If all zeros of p are simple and nonzero
⇒ each solution of the difference equation is a linear combination of such
special solutions.

✷

What to do when p(E)x = 0 when p has non-simple zeros?

Zeros of Higher Multiplicity:

x(λ) = [λ, λ2, λ3 · · ·]
p(E)x(λ) = p(λ)x(λ)

differentiate with respect to λ

p(E)x′(λ) = p′(λ)x(λ) + p(λ)x′(λ)

if λ is a multiple zero of p, then p(λ) = p′(λ) = 0 ∴ x(λ) and x′(λ) solve
difference equation.
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take x′(λ) = [1, 2λ, 3λ2, · · ·]. If λ 6= 0, it’s independent of the solution x(λ)

because det

[
λ λ2

1 2λ

]
6= 0

∴ if sequence truncated to 2nd term the resulting vectors in R2 are linearly
independent.

Same reasoning shows that if λ is a zero of p having k multiplicity

p(E)x = 0 has solutions

x(λ) = [λ, λ2, λ3 · · ·]
x′(λ) = [1, 2λ, 3λ2 · · ·]
x′′(λ) = [0, 2, 6λ · · ·]

: = :

xk−1(λ) =
dk−1

dλk−1
[λ, λ2, λ3 · · ·]

Theorem II: Let p be the characteristic polynomial with p(0) 6= 0, Then the
basis of the null space of p(E) is obtained as follows: for each zero of p having
multiplicity k associate the k basic solution x(λ), x′(λ), x′′(λ) · · ·xk−1(λ)

where (λ) = [λ, λ2, λ3 · · ·]
i.e. general solution if λ0 is one such non-simple zeros, the the general solution
is α1x(λ0) + α2x

′(λ0) + . . . αk−1x
k−1(λ0) ✷

Example 4xn − 9xn−1 + 6xn−2 − xn−3 = 0

let xn = λn ⇒ λn(4− 9λ−1 + 6λ−2 − λ−3) = 0

λn(4λ3 − 9λ2 + 6λ− 1) = 0

λn(λ+ 1)2(4λ− 1) = 0

The zeros of the characteristic are: −1 (double, k = 2), 1/4 (simple).

x(λ) = [λ, λ2, λ3 · · ·]
x′(λ) = [1, 2λ, 3λ2 · · ·]

x(−1) = [−1, 1,−1 · · ·], x

(
1

4

)
=

[
1

4
,
1

42
,
1

43,
· · ·
]

x′(−1) = [1,−2, 3,−4 · · ·]
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general solution: x = αx(−1) + βx′(−1) + λx

(
1

4

)

or xn = α(−1)n + βn(−1)n−1 + λ

(
1

4

)n

✷

Example Consider xn+1 − nxn = 0, not polynomial.

By inspection:

n = 1 x2 = x1

n = 2 x3 = 2x2 = 2x1

n = 3 x4 = 3x3 = 3 · 2x1

xn = (n− 1)!x1

✷

Stable Difference Equations

x = [x1, x2 · · ·xn · · ·] ∈ V

is bounded if ∃ c constant such that |xn| ≤ c ∀n

i.e. supn|xn| <∞

p(E)x = 0 is stable if all its solutions are bounded.

Theorem for p with p(0) 6= 0

equivalent

{
(i) p(E)x = 0 is stable
(ii) All zeros of p satisfy |z| ≤ 1 for simple zeros|z| < 1 for zeros of higher multiplicity

Example 4xn + 7λxn−1 + 2xn−2 − xn−3 = 0

4λ3 + 7λ2 + 2λ− 1→ p has −1 double and 1
4
∴ unstable.

Example xn = xn−1 + xn−2 λ2 − λ4 = 0 roots:

(
1±
√
5
)
/2 ∴ unstable.

✷
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