
Math 56 Newton Fractals Michael Downs

1 Newton’s Method

Given a general function f(x), how can we
determine its roots? This is a difficult prob-
lem, especially if f is intractable and analytic
solutions are not feasible. Newton’s method
is one of the most widely known algorithms
for solving this problem. It is an iterative
process that requires an initial guess and the
ability to evaluate, or at least approximate,
f ′(x). The equation governing each term can
be relatively simple and the process converges
quadratically (the number of correct digits
doubles per iteration) in many cases, mak-
ing it a reasonable first effort before trying
other, more complicated or specialized meth-
ods. The equation for term xn+1 in the New-
ton iteration is given by:

xn+1 = xn −
f(xn)

f ′(xn)
(1)

The derivation of Newton’s method is as
follows: Values of a function f(x) in a neigh-
borhood of a point x0 can be approximated
by the the function’s tangent line at that
point using the point-slope equation g(x) =
f ′(x0)(x− x0) + f(x0). Thus, given a reason-
able starting guess for the root, x0, we can
obtain a better approximation for the root,
x1, by solving 0 = f ′(x0)(x1− x0) + f(x0) for

x1. This, of course, yields x1 = x0 − f(x0)
f ′(x0)

.

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75

-0.5

-0.25

0.25

0.5

0.75

1

Figure 1: Visualization of Newton’s Method

We visualize this in figure 1 using using
Newton’s method to find a root of the func-
tion f(x) = x3−3x2+2x. The intersection of
the vertical line and the x axis marks our ini-
tial guess of x0 = 2.2 and the intersection of
the tangent line and the x axis is x1, which is
closer to the true root than our initial guess.

This raises several questions, however.
How would the iteration behave if the initial
guess were much farther away from the de-
sired root? If it were closer to another root?
What if the derivative were zero at one of the
iteration points? When is Newton’s method
quick? For what starting values does New-
ton’s method converge? One might expect
that the iterations would have converged to
a different root if our initial guess were much
closer to that root. One might also expect
slow convergence out of the process if the
starting guess were extremely far way from
the root. If the derivative were zero or ex-
tremely small in one of the iterations, the
next approximation in the iteration would far
overshoot the true value of the root and the
iteration might not converge at all.

In practice, there are several cases when
Newton’s method can fail. We turn to Tay-
lor’s theorem to understand roughly when the
method breaks down as well as its conver-
gence rate when conditions are ideal. At this
point we still consider only real valued func-
tions that take real arguments.

Taylor’s Theorem. Let f ∈ Ck. Then,
given the function’s expansion about a point
a, there exists q ∈ (a, x) such that

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2+

· · ·+ f (n)(a)

n!
(x− a)n +

f (n+1)(q)

(n+ 1)!
(x− a)n+1

for 1 ≤ n ≤ k. �

Using Taylor’s theorem we show that
Newton’s method has quadratic convergence
under certain conditions.

1

Math 56 Newton Fractals Michael Downs

Proposition. Let f ∈ C2 and z be a root
of f . Let I = [z − c, z + c] be an interval
about the root. Let x0 ∈ I be an initial guess
for the root. If f ′(x) 6= 0∀x ∈ I and f ′′(x) is
bounded on I, then Newton’s method achieves
quadratic convergence.

Proof. Consider the expansion of the function
f about xn evaluated at z. Using Taylor’s
theorem to write this equation:

f(z)=f(xn)+f ′(xn)(z−xn)+ f ′′(q)
2

(z−xn)2

for some q ∈ (xn, z). Realizing that f(z) = 0
we can divide the equation by f ′(xn) and
rewrite the equality as:

xn −
f(xn)

f ′(xn)
− z =

f ′′(q)

2f ′(xn)
(xn − z)2

Recognizing the definition of the next term in
a newton iteration, this becomes:

xn+1 − z =
f ′′(q)

2f ′(xn)
(xn − z)2

Take the absolute values of both sides. Let C
=

∣∣∣ f ′′(q)
2f ′(xn)

∣∣∣. Let εn+1 = |xn+1−z| be the abso-

lute error in the n+1th term and εn = |xn−z|
be the absolute error in the nth term. We now
have:

εn+1 = Cε2n

If C were a constant, or approximately con-
stant each iteration, this would signify that
Newton’s method achieves quadratic conver-
gence. In other words, the number of correct
digits in each approximation doubles each
iteration. C is approximately constant, or
at least bounded, when f ′(x) is nonzero for
x ∈ I, f ′′(x) is bounded for x ∈ I, and the
starting guess x0 is close enough to the root.
Finally, q ≈ z because the interval (xn, z)
shrinks as each xn become closer and closer
to z.

In some cases convergence can still be
achieved given non-ideal condition, though
the rate might be slower, possibly exponen-
tial/linear or worse, meaning that the number
of correct digits increases linearly per itera-
tion rather than doubling. For example, con-
vergence to a root with multiplicity greater
than 1 is generally slower than quadratic.

Two important but difficult elementary
calculations are the square root and the re-
ciprocal. In present day we’re able to per-
form these calculations with ease and high
accuracy due to computers and efficient algo-
rithms. Computers have not always existed,
however, and in the past, these calculations
were done by hand using processes such as
Newton’s method. Consider the two func-
tions f1(x) = x2 − a1 and f2(x) = a2 − 1

x

where a1 and a2 are real, nonzero constants.
f1 has roots at ±√a1 and f2 has a root at 1

a2
.

Using f ′1(x) = 2x and f ′2(x) = − 1
x2

we obtain
the iterations

xn+1 =
xn + a

xn

2
(2)

xn+1 = xn(2− axn) (3)

for approximating the root or reciprocal of a
given number a. It’s interesting to note that
neither iteration converges given a starting
guess of zero. For (1), it’s clear from the equa-
tion that x1 is undefined for a starting guess
of x0 = 0. Remembering the earlier theo-
rem, starting with x = 0 guarentees that the
derivative is zero-valued on I. Also, one can
see from figure 2 that the root that the pro-
cess converges to is dependent upon the sign
of the initial guess. Intuitively, it makes sense
that the process would not converge given a
starting guess equidistant from each root.

2

Math 56 Newton Fractals Michael Downs

-2.4 -1.6 -0.8 0 0.8 1.6 2.4 3.2 4 4.8

-3

-2

-1

1

2

Figure 2: Bad guess vs good guess

Figure two illustrates why the starting
guess is important. A starting guess of 2
yields a much more accurate approximation
than one of .01, which overshoots the root
by a wide margin. The intersection of the
x axis and the near-horizontal line in figure
2 would be the next iteration in the series.
The iteration for the reciprocal is also an ex-
ample of why the starting guess is important.
If the starting guess is not in the open inter-
val (0, 2

a
), Newton’s method will not converge

at all. Generally, Newton’s method does not
converge if the derivative is zero for one of the
iteration terms, if there is no root to be found
in the first place, or if the iterations enter a
cycle and alternates back and forth between
different values.

2 Fractals and Newton It-

erations in the Complex

Plane

An interesting result is that Newton’s method
works for complex valued functions. Having
seen that Newton’s method behaves differ-
ently for different starting guesses, converg-
ing to different roots or possibly not con-
verging at all, one might wonder what hap-
pens at problem areas in the complex plane.
For example, starting points that are equidis-

tant to multiple different roots. Attempting
to visualize the convergence of each possible
starting complex number results in a frac-
tal pattern. Figure 3 is a colormap for the
function f(z) = z3 − 1 depicting which root
Newton’s method converged to given a start-
ing complex number. Complex numbers col-
ored red eventually converged to the root at
z = 1. Yellow means that that starting com-
plex number converged to e

2iπ
3 , and teal signi-

fies convergence to e
−2iπ

3 . The set of starting
points which never converge forms a fractal.
This set serves as a boundary for the differ-
ent basins of attraction, or the set of points
which converge to a particular root.

Re(z)

Im
(z

)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 3: f(z) = z3 − 1

Re(z)

Im
(z

)

−0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Figure 4: A closeup of a lobe with clear frac-
tal pattern

3

Math 56 Newton Fractals Michael Downs

Looking back to figure 2, visualizing the
movement of the tangent line back and forth
across the minimum of the parabola reveals
that tiny variations in choice of starting point
near a problem area can change which root
the iterations converge to and also that the
small area near the minimum gets sent to the
majority of the real line. This behavior of
a small area being mapped to a large one is
characteristic of fractals and gives us an in-
tuition as to why this phenomenon occurs:
small movements from a point in the com-
plex plane analogous to the minima from fig-
ure 2 result in the next term in the iteration
being sent chaotically to some other point in
the complex plane, which could then do any-
thing.

It will now be useful to define what a frac-
tal is and give a brief summary of different
fractal properties. It turns out that there’s
no universally accepted definition of a fractal,
but typically they’re described as a complex
geometric figure that does not become sim-
pler upon magnification and exhibit at least
one of the following properties: self-similarity
at different scales, complicated structures at
different scales, nowhere differentiable (they
are quite jagged and rough), and a ”fractal
dimension” that’s not an integer. For exam-
ple, figures 3 and 4 show the self-similarity
property of fractals. Zooming in to one of
the lobes reveals even more lobes.

Similar to how the area of a circle changes
as per the square of its radius and the vol-
ume of a sphere changes as per the cube of its
radius, the space-filling capacity of whatever
dimension the fractal exists in does not nec-
essarily change per an integer when its ”ra-
dius analogue” changes. One way to measure
the fractal dimension that can be approxi-
mated numerically is called the box-counting
dimension. Picture a fractal, such as the one
in Figure 5, lying on an evenly spaced grid.
Now imagine a box of a certain size, and how
many of those boxes it would take to com-

pletely cover the fractal. The box-counting
dimension is determined by calculating how
the total number of boxes required changes
as the size of each box becomes smaller and
smaller. Formally: Let ε be the size of a box
and let N(ε) be the number of boxes required
to completely cover the given fractal F given
side length ε. Then the box-counting dimen-
sion is defined as:

dimbox(F) = lim
ε→0

log(N(ε))

log(N(1
ε
))

(4)

Let’s confirm that the pattern in figure
5 generated from the Newton iterations over
the complex grid for the function f(z) =
z3 − 1 is, in fact, a fractal using numerical
approximation to determine the box-counting
dimension. The number of boxes N of size R
needed to cover a fractal entirely follows the
equation N = N0∗RDF where N0 is some con-
stant and DF is the fractal dimension, which
is less than the dimension of space the fractal
exists in.

Re(z)

Im
(z

)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 5: Fractal part of figure 3

We can see a discrepency between the
number of boxes N required to cover the frac-
tal given the size R (blue line) and the typ-
ical number required for a non-fractal two-
dimensional figure (red-line) in figure 6. This
is a good indication that Figure 5 is, in fact,
a fractal.

4

Math 56 Newton Fractals Michael Downs

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

r

n
(r

)

actual box−count

space−filling box−count

Figure 6: Number of boxes N vs size R

Figure 7 is a graph of the exponent DF in
the earlier relation vs the size of the box, R.
We observe that the Newton fractal generated
from f(z) = z3− 1 has a fractal dimension of
appoximately DF = 1.5 for R less than 100.

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

r, box size

−
 d

 l
n
 n

 /
 d

 l
n
 r

,
lo

c
a
l
d
im

e
n
s
io

n

2D box−count

Figure 7: DF vs size R

3 In terms of Complex

Dynamics

We now turn our attention to the more
sophistocated and rigorous language used to
describe this phenomena developed in com-
plex dynamics. Newton iterations are actu-
ally a discrete dynamical system. A dynami-
cal system is a geometrical description of how

the state of a set of points evolve over time
based on a fixed rule. In this case, the the
points are the entirety of the complex plane
and the fixed rule is the newton iteration
xn+1 = xn− f(xn)

f ′(xn)
for a given f , which we will

hence refer to as Nf (xn) = xn+1. It is discrete
because the system changes in discrete jumps
per iteration rather than continuously.

The set of all points that a particular
starting point x0 evolves into under repeated
applications of Nf is known as the trajec-
tory or orbit of x0. Let Na

f represent a
repeated applications of Nf i.e. N3

f (x) =
Nf (Nf (Nf (x))). Then the orbit of a starting
complex point x0 is:

O(x0) = {x0, Nf (x0), N
2
f (x0), ...} (5)

If Nf (x) = x for some point x, then x is a
fixed point in the dynamical system. Clearly
all roots of f are fixed points. For our pur-
poses, these are the only fixed points as well.
We can define the earlier mentioned term
basin of attraction in terms of the notions
of orbits and fixed points. Indeed, the basin
of attraction for a fixed point is the set of
all points whose orbit eventually reaches that
fixed point and remains there. That is, for a
fixed point r, its basin of attraction is:

Bf (r) = {z| lim
a→∞

Na
f (z) = r} (6)

We point to figure 3 to illustrate this con-
cept. Each of the different colors represents
the points in one of the three different basins
of attractions. Note that the borders are not
in these sets. It’s also possible for a starting
point to enter in a cycle such that the iter-
ations alternate back and forth, or the orbit
is a finite set that does not contain a fixed
point, as seen in figure 20.

The union of all the basins of attraction
and attractive cycles is known as the Fatou
set. Points in the Fatou set behave regu-
larly in that their orbits behave similarly to
their neighbors’ orbits, eventually converging
to the same fixed point or attractive cycle.

5

Math 56 Newton Fractals Michael Downs

The complement of the Fatou set is known as
the Julia set. This is the set of points whose
orbits are complicated, meaning that they do
not eventually rest upon a fixed point and
generally behave chaotically. Orbit of a point
in the Julia set is a subset of the Julia set,
and small perturbations in points of the Ju-
lia set result in a variety of different orbits.
The Julia set occurs at the boundaries of the
different basins of attraction. In figure 8, the
lighter points are a visualization of the Julia
set and the darker the Fatou set.

Re(z)

Im
(z

)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 8: Colormap of iterations until con-
vergence. Darker means faster convergence.

4 Variations of Newton’s

Method

The most desireable feature of Newton’s
method is its quadratic convergence, which
it often loses if conditions are not ideal. For
example, attempting to use Newton’s method
to find a root of multiplicity greater than one
results in linear convergence. Methods have
been developed to account for such cases in
order to recover the quadratic convergence
property. For example, given a function f(x)
with a root of multiplicity m, we can instead
use Newton’s method on the function g(x) =

f(x)
1
m which has the same root but with mul-

tiplicity one. Using g′(x) = 1
n
f(x)

1
m
−1f ′(x)

the iteration becomes

xn+1 = xn −m
f(xn)

f ′(xn)
(7)

which is called the relaxed Newton’s method.

Let’s observe the difference in the con-
vergence rates for the function f1(z) = (z −
1)(z − 2)2(z − 3) which has a root at two of
multiplicity two using the regular and the re-
laxed Newton’s method.

Re(z)

Im
(z

)

0 0.5 1 1.5 2 2.5 3 3.5 4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 9: 10 iterations using regular Newton,
all simple roots

In figure 9 we exhibit a colormap of the
convergence in 10 iterations for f2(x) = (z −
1)(z−2)(z−3), which has a simple root where
f1 has a double root. Red, yellow, and teal
signify convergence to the roots 1, 2, and 3
respectively. Dark blue means that number
did not converge, and is seen only near the
borders for the different basins of attraction.

6

Math 56 Newton Fractals Michael Downs

Re(z)

Im
(z

)

0 0.5 1 1.5 2 2.5 3 3.5 4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 10: 10 iterations using regular Newton

Figure 10 depicts the reults of 10 itera-
tions of newton’s method on f1 for each start-
ing complex number on a small grid about the
roots. Red, lime, and light blue indicate con-
vergence to the roots 1, 2, and 3 respectively.
Dark blue means that the iterations did not
converge to the root for that given value.

Re(z)

Im
(z

)

0 0.5 1 1.5 2 2.5 3 3.5 4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 11: 10 iterations using relaxed Newton

Contrasting figures 9 and 10, we observe
that the presence of a double root indeed
results in slower convergence to that root.
Nearly all the values in figure 9 converged,
while most of the values in figure 10 did not
converge.

The relaxed Newton’s method fixes this,
however, as seen in figure 11. The colors in

figure 11 have a different interpretation. Lime
here means convergence to 2 and blue means
no convergence at all. We observe that con-
vergence to the double root is achieved much
more quickly for a larger amount of starting
values using the relaxed newton’s method. It-
erations using the relaxed Newton’s method
also results in a different fractal pattern.

In general, the relaxed Newton’s method
can be used on any function and the choice
of m, the root, affects the convergence and
the sharpness of the fractal pattern, Choos-
ing 0 < m < 1 softens the fractal pat-
tern as seen in figure 13. This is because
exponentiating the original polynomial with
something greater than 1 introduces a multi-
ple root resulting in slower convergence but
less instances of overshooting near a problem
point. On the other hand, choices of m > 1
can result in faster convergence, but the it-
erations are more prone to chaotic behavior
near boundary points resulting in a sharper
fractal pattern, as seen in figure 12.

Re(z)

Im
(z

)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 12: 100 iterations of relaxed Newton
on f(z) = z3 − 1 with m = 1.9

7

Math 56 Newton Fractals Michael Downs

Re(z)

Im
(z

)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 13: 500 iterations of relaxed Newton
on f(z) = z3 − 1 with m = .1

Another variation of Newton’s method
is called Newton’s method for a multiple
root. This approach trades simplicity of iter-
ation terms for more robustness in achieving
quadratic convergence. If a polynomial f(x)
has a root of multiplicity m at a point x0,
its derivative f ′ will have a root of multiplic-
ity m− 1 at that point. Thus we can obtain
a function g(x) = f(x)

f ′(x)
that has all simple

roots at all of f ’s roots. The iteration then
becomes:

xn+1 = xn −
f(xn)f ′(xn)

f ′(xn)2 − f(xn)f ′′(xn)
(8)

The presence of a derivative in the original
Newton iteration was troubling enough. Here
we now must be able to calculate the sec-
ond derivative as well. The benefit of New-
ton’s method for multiple roots is that it con-
verges quadratically at every root. We ob-
serve this through visualising the convergence
of f(z) = (z − 1)2(z − 2)2(z − 3)2.

Re(z)

Im
(z

)

0 0.5 1 1.5 2 2.5 3 3.5 4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 14: 10 iterations using regular Newton

Re(z)

Im
(z

)

−1 0 1 2 3 4 5

−3

−2

−1

0

1

2

3

Figure 15: 10 iterations using Newton’s
method for multiple roots

We see in figure 14 that not many starting
values achieve convergence within the desired
tolerance when all three roots have multiplic-
ity two using the standard Newton iteration.
Compare this to using Newton’s method for
multiple roots in figure 15 and 16. Dark blue
signifies convergence to something other than
one of the three desired roots or failure to con-
verge at all. Even though values that would
have converged to one of the roots in regu-
lar Newton’s now converge to something else,
largely due to the presence of the derivative
in the denominator, the values that converge
to the desired roots do so much more quickly.
In figure 15 we only use 10 iterations. There
is little difference between figure 15 and 16
when 100 iterations are used.

8

Math 56 Newton Fractals Michael Downs

Re(z)

Im
(z

)

−1 0 1 2 3 4 5

−3

−2

−1

0

1

2

3

Figure 16: 100 iterations using Newton’s
method for multiple roots

Other, more complicated and specialized,
variations of Newton’s method exist.

5 A Survey of Various

Newton Fractals

In this section we visualize different Newton
fractals, their properties, and their conver-
gence. We saw the newton fractal several
times earlier for the polynomial f(z) = z3−1
with roots at the 3rd roots of unity. Visually
it has three monochrome areas with the frac-
tal pattern on the borders of these areas, on
the lines with points equidistant from two dif-
ferent roots. All the other polynomials with
roots at the nth roots of unity follow the sim-
ilar pattern of having large monochrone areas
and then chaotic fractal behavior on the lines
that separate these areas.

Re(z)

Im
(z

)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 17: f(z) = z4 − 1

Re(z)

Im
(z

)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 18: f(z) = z5 − 1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 19: f(z) = z10 − 1

9

Math 56 Newton Fractals Michael Downs

A given starting point either converges to
a root, enters into a cycle, or behaves chaot-
ically and wanders about the complex plane.
Figure 20 shows all three of these possibil-
ities. Light blue, orange, and lime are the
basins of attraction while dark blue and ma-
roon are the attractive cycles. The fractal
pattern is the set of points that wander chaot-
ically about the complex plane.

Re(z)

Im
(z

)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 20: The maroon and dark blue points
enter cycles

Let’s observe a typical Newton fractal
with all real roots. The color below sig-
nifies how long that starting point took to
converge. Darker means faster convergence,
lighter means slower. Each number converged
reasonably quickly, with the slowest taking 31
iterations.

Re(z)

Im
(z

)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 21: f(z) = z(z − 1)(z + 1)

Now let’s look at a function with all imagi-
nary roots. The roots of the function in figure
22 are at −2i,−i, i, 2i.

Re(z)

Im
(z

)

−8 −6 −4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

Figure 22: f(z) = x4 + 5x2 + 4

This fractal behaved pretty regularly,
nothing too exotic. How about one with real
and imaginary roots? Figure 23 shows the
Newton fractal with roots at 0, 1,−1,−i and
i.

10

Math 56 Newton Fractals Michael Downs

Re(z)

Im
(z

)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 23: f(z) = z5 − z

Figure 24 revisits the polynomial with all
real roots from figure 21, except here relaxed
Newton’s method is performed with m = 1.9.
The pattern looks like two insects facing each
other. I tried different values of m and found
that complex values of m apply a twisting ef-
fect to the fractal. Given a real part of 1, an
increasing imaginary part starting at 0 and
going to 1 results in a clockwise twist while a
decreasing imaginary part results in a coun-
terclockwise twist.

Re(z)

Im
(z

)

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4

Figure 24: f(z) = z(z − 1)(z + 1), m = 1.9

Re(z)

Im
(z

)

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4

Figure 25: f(z) = z(z−1)(z+1), m = .9i+1

Re(z)

Im
(z

)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 26: f(z) = z3 − 1, m = .5i+ 1

11

Math 56 Newton Fractals Michael Downs

6 Code

Original code for this project was written in Matlab. I used Frederic Moisy’s box-counting
code as well. Code for regular/relaxed Newton iteration performing calculations on every
value:

1 f unc t i on r = oldnewtp (p , x , N, m, dotime)
dp = polyder (p) ;

3 f o r i = 1 :N
i f dotime

5 t i c ;
end

7 x = x − m∗ po lyva l (p , x) . / po lyva l (dp , x) ;
i f dotime

9 toc
end

11 end
r = x ;

13 end

Code for performing the different newton iterations on only nonconverged values:

1 % implements newton ’ s a lgor i thm f o r root f i nd i n g .

3 % p − a row vecto r f o r the c o e f f i c i e n t s o f a polynomial . i . e . [1 2 3 4] i s
% xˆ3 + 2∗xˆ2 + 3∗xˆ1 + 4

5 % x − complex number , i s a s t a r t i n g guess which should be c l o s e to the f i n a l
root

% N − i n t ege r , i s the number o f t imes to run the i t e r a t i o n
7 % m − constant mu l t ip l e in r e l axed newton i t e r a t i o n s
% t o l − stop i t e r a t i n g when the d i f f e r e n c e in i t e r a t i o n becomes t h i s

9 % c r i t i c a l − i t e r a t i o n at which c a l c u l a t i o n s switch over to only per forming
newton on nonconverged va lues

% r − matrix that i s the r e s u l t o f the N i t e r a t i o n s
11 % s − pa i red matrix with each # of i t e r a t i o n s un t i l under d e s i r ed t o l e r an c e

func t i on [r , s] = newtp (p , x , N, m, to l , mr , c r i t i c a l , dotime)
13 % get the d e r i v a t i v e and second d e r i v a t i v e i f nece s sa ry

dp = polyder (p) ;
15 i f mr dp2 = polyder (dp) ; end

17 % se t up a l o g i c a l matrix to keep track o f which numbers have converged
% and keep track o f prev ious i t e r a t i o n s

19 notconverged = true (s i z e (x , 1) , s i z e (x , 2)) ;
prev = x ;

21

% se t up matrix to keep track o f when each entry converges
23 conv = ze ro s (s i z e (x , 1) , s i z e (x , 2)) ;

25 f o r j = 1 :N
i f dotime

27 t i c ;
end

29 % perform the i t e r a t i o n s on only the va lue s that have not converged

12

Math 56 Newton Fractals Michael Downs

% to with in the de s i r ed t o l e r an c e
31

i f j <= c r i t i c a l
33 i f mr

x = x − (po lyva l (p , x) .∗ po lyva l (dp , x)) . / (po lyva l (dp , x) . ˆ2 −
po lyva l (p , x) .∗ po lyva l (dp2 , x)) ;

35 e l s e
x = x − m∗ po lyva l (p , x) . / po lyva l (dp , x) ;

37 end
e l s e

39 i f mr
x (notconverged) = x(notconverged) − (po lyva l (p , x (notconverged)

) .∗ po lyva l (dp , x (notconverged))) . / (po lyva l (dp , x (notconverged)) . ˆ2 − po lyva l
(p , x (notconverged)) .∗ po lyva l (dp2 , x (notconverged))) ;

41 e l s e
x (notconverged) = x(notconverged) − m∗ po lyva l (p , x (notconverged

)) . / po lyva l (dp , x (notconverged)) ;
43 end

end
45

% l o g i c a l matrix with 1 i f the entry has not converged and 0 i f i t
47 % has

t = abs (prev − x) > t o l ;
49

% i f an entry converges t h i s i t e r a t i o n record how many i t e r a t i o n s
51 % i t took

conv (xor (notconverged , t)) = j ;
53

% update the l o g i c a l matrix
55 notconverged = t ;

57 % break out o f the loop i f every entry has converged
i f ˜ notconverged

59 f p r i n t f (’ converged a f t e r %g i t e r a t i o n s \n ’ , j)
break

61 end

63

i f dotime
65 toc

end
67

prev = x ;
69 end

71 s = conv ;
r = x ;

73 end

Function used to convert a fractal colormap to a binary image:

1 % takes a colormap o f a f r a c t a l and conver t s i t i n to a binary image .
f unc t i on r = tob inary (img)

13

Math 56 Newton Fractals Michael Downs

3 nrows = s i z e (img , 1) ;
n co l s = s i z e (img , 2) ;

5

r e s u l t = ones (nrows , n co l s) ;
7

f o r row = 1 : nrows
9 f o r c o l = 1 : nco l s

l e f t = co l − 1 ;
11 r i g h t = co l + 1 ;

top = row − 1 ;
13 bot = row + 1 ;

15 i f (l e f t >= 1) && (img (row , l e f t) ˜= img (row , c o l))
r e s u l t (row , c o l) = 0 ;

17 end
i f (r i g h t <= nco l s) && (img (row , r i g h t) ˜= img (row , c o l))

19 r e s u l t (row , c o l) = 0 ;
end

21

i f (top >= 1) && (img (top , c o l) ˜= img (row , c o l))
23 r e s u l t (row , c o l) = 0 ;

end
25

i f (bot <= nrows) && (img (bot , c o l) ˜= img (row , c o l))
27 r e s u l t (row , c o l) = 0 ;

end
29

i f (l e f t >= 1) && (top >= 1) && (img (top , l e f t) ˜= img (row , c o l))
31 r e s u l t (row , c o l) = 0 ;

end
33

i f (r i g h t <= nco l s) && (top >= 1) && (img (top , r i g h t) ˜= img (row ,
c o l))

35 r e s u l t (row , c o l) = 0 ;
end

37

i f (l e f t >= 1) && (bot <= nrows) && (img (bot , l e f t) ˜= img (row , c o l)
)

39 r e s u l t (row , c o l) = 0 ;
end

41

i f (r i g h t <= nco l s) && (bot <= nrows) && (img (bot , r i g h t) ˜= img (
row , c o l))

43 r e s u l t (row , c o l) = 0 ;
end

45 end
end

47 r = r e s u l t ;
end

Main fractal producing function. Usage of varargin and parameter parser taken from RazerM
of stackexchange:

14

Math 56 Newton Fractals Michael Downs

% func t i on to produce an image o f the f r a c t a l developed when us ing newton ’ s
2 % method to f i nd roo t s g iven s t a r t i n g po in t s . takes a polynomial , per forms
% N newton i t e r a t i o n s over a g r id in the complex plane and produces a

4 % colormap based on the r e s u l t s o f the i t e r a t i o n s at that po int

6 % p − a row vecto r o f the input polynomial ’ s c o e f f i c i e n t s i e [1 0 0 −1] =
% zˆ3 −1

8 % xmin , xmax , ymin , ymax − s c r e en bounds
% to l 1 − f l o a t , t y p i c a l l y o f the format 1ex where x i s an i n t e g e r .

10 % d i g i t s o f accuracy in the rounding . f o r example , an input o f 1e−3
% rounds the r e s u l t o f the newton i t e r a t i o n s to 3 decimal p l a c e s and rounds

12 % the r e s u l t s o f the c a l l to root to 3 decimal p l a c e s in order to compare
% i f a func t i on converged to a root

14 % to l 2 − f l o a t , t y p i c a l l y o f the format 1ex where x i s an i n t e g e r .
%stops per forming c a l c u l a t i o n s a number when the d i f f e r e n t between

16 % i t e r a t i o n s i s under t h i s t o l e r an c e .
% step − how f i n e the g r id i s . ” r e s o l u t i o n ”

18 % N − i n t ege r , number o f newton i t e r a t i o n s to perform
% m − c o e f f i c i e n t to mu l t ip l ty by f o r the r e l axed newton ’ s method . keep

20 % th i s at 1 f o r the r e gu l a r newton ’ s method
% mr − boolean , perform c a l c u l a t i o n s us ing newton ’ s method f o r mu l t ip l e r oo t s

in s t ead
22 % cen t e r i z e − boolean , c e n t e r i z e the data be f o r e p l o t t i n g the image .

% usua l l y the matrix w i l l be a bunch o f i n t e g e r s . t h i s c e n t e r i z e s the data
24 % about the mean .

% i t e r a t i o n s c a l e − boolean , d i sp l ay graph ic c o l o r i s based on root converged
to AND

26 % number o f i t e r a t i o n s un t i l convergence
% on l y i t e r a t i o n − boolean , d i sp l ay graph ic i s co l o r ed based only on number o f

28 % i t e r a t i o n s un t i l convergence
% binaryimg − boolean , i f t rue output w i l l be a matrix o f a l l ones and ze ro s .

30 % use to d i sp l ay the f r a c t a l in i s o l a t i o n .
% c r i t i c a l − i n t e g e r . argument that ’ s passed to the newtp func t i on that

32 % determines at which i t e r a t i o n i t should switch over to only doing newton
i t e r a t i o n s on

% converged value
34 % dotime − boolean , d i sp l ay the time in each i t e r a t i o n o f the newton

% i t e r a t i o n loop
36 % sc a l e − f l o a t , s c a l e s the axes by t h i s number

% random − i n t e g e r . i f nonzero uses a random polynomial o f degree g iven by
random in order to generate the f r a c t a l

38 f unc t i on r = f r a c t a l p (vararg in)

40 % th i s code was taken from RazerM of s tack exchange . thanks RazerM
%# de f i n e d e f a u l t s at the beg inning o f the code so that you do not need to

42 %# s c r o l l way down in case you want to change something or i f the he lp i s
%# incomplete

44 opt ions = s t r u c t (’p ’ , [1 0 0 −1] , ’ xmin ’ ,−2 , ’xmax ’ ,2 , ’ ymin ’ ,−2 , ’ymax ’ ,2 , ’
s t ep ’ , . 0 1 , ’n ’ ,100 , ’ t o l 1 ’ ,1 e−3, ’ t o l 2 ’ ,1 e−4, ’m’ ,1 , ’mr ’ , f a l s e , ’ o ld ’ , f a l s e , ’
cent ’ , true , ’ i t e r a t i o n s c a l e ’ , f a l s e , ’ o n l y i t e r a t i o n ’ , f a l s e , ’ binaryimg ’ , f a l s e ,
’ c r i t i c a l ’ , 10 , ’ dotime ’ , f a l s e , ’ s c a l e ’ , 1 , ’ random ’ ,0) ;

46 %# read the acceptab l e names

15

Math 56 Newton Fractals Michael Downs

optionNames = f i e ldnames (opt ions) ;
48

%# count arguments
50 nArgs = length (vararg in) ;

i f round (nArgs /2)˜=nArgs/2
52 e r r o r (’EXAMPLE needs propertyName/propertyValue pa i r s ’)

end
54

f o r pa i r = reshape (vararg in , 2 , []) %# pa i r i s {propName ; propValue}
56 inpName = lower (pa i r {1}) ; %# make case i n s e n s i t i v e

58 i f any (strmatch (inpName , optionNames))
%# overwr i t e opt ions . I f you want you can t e s t f o r the r i gh t c l a s s

here
60 %# Also , i f you f i nd out that the re i s an opt ion you keep g e t t i n g

wrong ,
%# you can use ” i f strcmp (inpName , ’ problemOption ’) , testMore , end”−

statements
62 opt ions . (inpName) = pa i r {2} ;

e l s e
64 e r r o r (’%s i s not a recogn i z ed parameter name ’ , inpName)

end
66 end

68 % se t up the g r id :
s c a l e = opt ions . (’ s c a l e ’) ;

70 xmin = opt ions . (’ xmin ’) ∗ s c a l e ;
xmax = opt ions . (’xmax ’) ∗ s c a l e ;

72 ymin = opt ions . (’ ymin ’) ∗ s c a l e ;
ymax = opt ions . (’ymax ’) ∗ s c a l e ;

74 x = xmin : opt ions . (’ s t ep ’) : xmax ;
y = ymin : opt ions . (’ s t ep ’) : ymax ;

76 [X,Y] = meshgrid (x , y) ;

78 % i f random was enabled c r e a t e the random polynomial
i f opt ions . (’ random ’) > 0

80 opt ions . (’p ’) = 5∗ randn (1 , opt ions . (’ random ’)+1) + 5∗ i ∗ randn (1 , opt ions
. (’ random ’)+1) ;
end

82

% f ind out which roo t s each complex number converges to
84 i f opt ions . (’ o ld ’) % constant time per i t e r a t i o n

Z = oldnewtp (opt ions . (’p ’) , X + Y∗ i , opt ions . (’n ’) , opt i ons . (’m’) ,
opt i ons . (’ dotime ’)) ;

86 e l s e % qu icke r time per i t e r a t i o n
[Z , S] = newtp (opt ions . (’p ’) , X + Y∗ i , opt ions . (’n ’) , opt i ons . (’m’) ,

opt i ons . (’ t o l 2 ’) , opt ions . (’mr ’) , opt i ons . (’ c r i t i c a l ’) , opt i ons . (’ dotime ’)) ;
88 end

% round each numbers
90 Z = round (Z ∗ 1/ opt ions . (’ t o l 1 ’)) / opt ions . (’ t o l 1 ’) ;

92 % determine a l l r oo t s o f the func t i on and s t o r e them in an array
r = roo t s (opt ions . (’p ’)) ;

94 n = length (r) ;

16

Math 56 Newton Fractals Michael Downs

96 % round each root to 8 decimal p l a c e s
r = round (r ∗ 1/ opt ions . (’ t o l 1 ’)) /1/ opt ions . (’ t o l 1 ’) ;

98

% add a zero in the end
100 i f ˜ ismember (0 , r)

r = [r . ’ 0] . ’ ;
102 end

104 % crea t e a matrix f u l l o f the i n d i c e s to which the number converged
[˜ , l o c] = ismember (Z , r) ;

106

i f opt ions . (’ cent ’) l o c = (l o c − n/2) /(n/2) ; end
108

110

i f opt ions . (’ binaryimg ’)
112 r = tob inary (l o c) ;

114 imagesc (x , y , r) ;
colormap gray ;

116 e l s e i f opt ions . (’ o n l y i t e r a t i o n ’)
imagesc (x , y , S) ;

118 e l s e
r = l o c ;

120 i f opt ions . (’ i t e r a t i o n s c a l e ’)
S = S/max(S (:)) ;

122 l o c = l o c .∗S ;
end

124 imagesc (x , y , l o c) ;
end

126 x l ab e l (’Re(z) ’)
y l ab e l (’ Im(z) ’)

128 ax i s square
opt ions

130 end

My original algorithm for computing the Newton iterations ran at constant time per loop
because it performed the iteration on every single entry in the input matrix. Upon suggestion
from Prof. Barnett, I improved this by only performing calculations on the values that had
not converged. I also broke off from the iterations if every value had converged within the
desired tolerance. This improves the run time:

% time i t takes f o r na ive implementation to compute us ing .001 r e s o l u t i o n
2 t i c ;
r = f r a c t a l p (p ,−1 ,1 ,−1 ,1 ,1 e−1,1e−2 , .001 ,55 ,1 , f a l s e , t rue) ;

4 toc

6 % time i t takes f o r improved implementation to compute us ing .001
% r e s o l u t i o n

8 % time i t takes f o r na ive implementation to compute us ing .001 r e s o l u t i o n
t i c ;

17

Math 56 Newton Fractals Michael Downs

10 r = f r a c t a l p (p ,−1 ,1 ,−1 ,1 ,1 e−1,1e−2 , .001 ,55 ,1 , f a l s e , f a l s e) ;
toc

>> test

Elapsed time is 9.724580 seconds.

converged after 51 iterations

Elapsed time is 6.840386 seconds.

This change, however, resulted in initially longer iteration times before dropping off and
become faster than the old method. What I ended up doing was adding a critical value
parameter at which the iteration switches over to only performing the calculation on the
nonconverged values. This value defaults to 10 and has to be changed in order to achieve
the fastest calculation.

7 References

https://www.math.uwaterloo.ca/~wgilbert/Research/GilbertFractals.pdf

http://www.chiark.greenend.org.uk/~sgtatham/newton/

https://www.whitman.edu/mathematics/SeniorProjectArchive/2009/burton.pdf

http://eprints.maths.ox.ac.uk/1323/1/NA-96-14.pdf

http://en.wikipedia.org/wiki/Box_counting_dimension

Alligood, Kathleen T., Tim Sauer, and James A. Yorke. ”Chapter 4.” Chaos: An Introduc-
tion to Dynamical Systems. New York: Springer, 1997. N. pag. Print.
http://en.wikipedia.org/wiki/Fractal

http://en.wikipedia.org/wiki/Newton%27s_method

http://en.wikipedia.org/wiki/Newton_fractal

http://www.fast.u-psud.fr/~moisy/ml/boxcount/html/demo.html

http://en.wikipedia.org/wiki/Julia_set

18

https://www.math.uwaterloo.ca/~wgilbert/Research/GilbertFractals.pdf
http://www.chiark.greenend.org.uk/~sgtatham/newton/
https://www.whitman.edu/mathematics/SeniorProjectArchive/2009/burton.pdf
http://eprints.maths.ox.ac.uk/1323/1/NA-96-14.pdf
http://en.wikipedia.org/wiki/Box_counting_dimension
http://en.wikipedia.org/wiki/Fractal
http://en.wikipedia.org/wiki/Newton%27s_method
http://en.wikipedia.org/wiki/Newton_fractal
http://www.fast.u-psud.fr/~moisy/ml/boxcount/html/demo.html
http://en.wikipedia.org/wiki/Julia_set

	Newton's Method
	Fractals and Newton Iterations in the Complex Plane
	In terms of Complex Dynamics
	Variations of Newton's Method
	A Survey of Various Newton Fractals
	Code
	References

