
Primality Testing and Factorization Methods

Eli Howey

May 27, 2014

Abstract

Since the days of Euclid and Eratosthenes, mathematicians have taken a keen
interest in finding the nontrivial factors of integers, as well as in finding prime
numbers, which have no such factors. Until only recently, however, the problem
of factoring numbers had no practical application beyond the advancement of
pure mathematics. That changed when the RSA algorithm was published in
1977; now, prime factorization and random number generation are vital to the
security of nearly every form of sensitive data, from private communications to
financial transaction information.

This project will focus on a few of the various algorithms that have been de-
veloped over the centuries to test the primality of numbers and to factor large
numbers into their prime components, with regard given to each algorithm’s
time complexity.

1 The RSA Algorithm

Since the primary modern motivation for factoring numbers into primes is to
crack various cryptosystems, it will benefit us to understand the process by
which we use these primes to encrypt information in the first place. The RSA
algorithm, developed in 1977 by Ron Rivest, Adi Shamir, and Leonard Adle-
man [1], is perhaps the most prevalent cryptographic algorithm in use today.
This section shall describe the algorithm, and the number theory relevant to
understanding its implementation.

RSA relies on two keys: a public key, used for information encryption and known
to anyone, and a private key, used to decrypt the information and known only
to the key generator.

The algorithm makes use of Euler’s totient function, φ(n), defined as the number
of positive integers less than n and coprime to n, i.e.,

φ(n) = #{k ∈ Z+ | k ≤ n and gcd(k, n) = 1}.

1

Primality Testing and Factorization Methods 2

It is simple to show that this function is multiplicative, that is, φ(ab) = φ(a)φ(b)
for all a, b ∈ Z+. Moreover, if p is prime, then it shares no nontrivial factors
with any smaller integer, so φ(p) = p− 1.

RSA key generation also requires computing the multiplicative inverse of a num-
ber modulo φ(n). The multiplicative inverse of a modulo n is the value b such
that ab ≡ 1 mod n. In the case where a and b are coprime, the integer solutions
x and y to ax+ by = 1 represent the multiplicative inverses of a modulo b, and
of b modulo a, respectively.

Algorithm (RSA key generation). Suppose we have access to a set of prime
numbers, or a prime number generator.

1. Randomly choose two distinct primes p and q of approximately equal size.1

2. Compute n = pq.

3. Compute φ(n) = φ(p)φ(q) = (p− 1)(q − 1).

4. Choose e ∈ Z with gcd(e, φ(n)) = 1. If e is prime, then one must only
check that e - φ(n).

5. Find the multiplicative inverse d = e−1 mod φ(n).

6. The public key is defined as the pair (e, n), and the private key as (d, n).

Given a message M with 0 ≤M < n,2 we can now encrypt M , and decrypt the
resulting ciphertext C, with the functions

E(M) ≡Me mod n, and D(C) ≡ Cd mod n,

respectively.

Note that encryption can be performed with knowledge of only the public key,
while decryption requires the private key. Since the private key was constructed
using φ(n), it is thus crucial to the security of the message that third parties
remain unable to reconstruct φ(n). Knowledge of φ(n) can be used to factor
n, computing φ(n) is no simpler than factoring n; thus, RSA remains secure as
long as factorization of large numbers remains difficult.

2 Primality Testing

In order to factor general large numbers into their prime components, we must
first know what the possible prime factors are. But this becomes increasingly
difficult to show by brute force as the numbers get large. Below are several
methods used to determine the primality of numbers of various sizes.

1Some encryption standards put extra requirements on p and q, e.g., they must be far
enough apart that factoring n by Fermat’s method is infeasible.

2It may seem unintuitive that a message would be an integer, but any text can be converted
to such an integer using what are called padding schemes, probabilistic conversion systems
that are consistent and reversible.

Primality Testing and Factorization Methods 3

2.1 Trial Division

Clearly, a positive integer n is prime if no positive integer 1 < k < n divides n.
Hence, the most näıve test of the primality of n is to test each k for divisibility
into n. To optimize this approach, we may make the following observations
(proofs omitted):

Theorem. If n is composite, then there is some k ∈ Z+, with 1 < k ≤
√
n,

where k | n.

Theorem. If p > 3 is prime, then p ≡ ±1 mod 6.

Thus, to test the primality of n by trial division, we need only check integers
less than

√
n of the form 6k± 1, a total of about

√
n/3 divisions. Alternatively,

if we know all the primes less than
√
n (which is likely, or at least easy to

find, for small n), we can test only those primes, for π(
√
n) = O(

√
n) divisions.

Therefore, trial division requires

O(
√
n) ·O(D ln2D) = O(n1/2 lnn(ln lnn)2)

operations.3 Depending on the circumstance, this method could thus be useful
for n up to about 1010.

2.2 The Sieve of Eratosthenes

Perhaps the oldest algorithm to determine large quantities of primes is the sieve
of Eratosthenes, presented in Nicomachus’s Introduction to Arithmetic some
1900 years ago [6]. The process is as follows:

Algorithm (Sieve of Eratosthenes). Given an upper bound n:

1. Create an array of n Boolean values, all initialized to True. These repre-
sent the numbers 0 to n− 1.

2. Set elements 0 and 1 to False.

3. For i = 2, 3, . . . , d
√
ne,4 if element i of the sieve is True, set all elements

ki < n to False.

The numbers marked True by the end of the algorithm are the primes contained
in the list. Such a result is guaranteed by the observation that the first number
marked True in the sublist {i + 1, . . . , n} after an iteration of Step 3 must be
prime.5

3Note that here, and in all other complexities in this paper, n is the number to be factored,
not the number of digits in that number. Since the number of digits is log10 n, we have
approximated the number of digits D by D ∼ lnn, which holds asymptotically.

4For i >
√
n, ki ∈ Ω ⇐⇒ k < i. But since we have crossed off all multiples of every

number less than i, every multiple of i must have already been crossed off.
5If this number were composite, then it would have a prime factor less than itself. But

then it would be a multiple of a number that we have already checked!

Primality Testing and Factorization Methods 4

2 3 �4 5 �6 7 �8 �9 ��10
11 ��12 13 ��14 ��15 ��16 17 ��18 19 ��20

��21 ��22 23 ��24 ��25 ��26 ��27 ��28 29 ��30

Figure 1: Sieve of Eratosthenes for n = 30

101 102 103 104 105 106

n

10-5

10-4

10-3

10-2

10-1

100

R
u
n
ti
m
e
 (
s)

Figure 2: log-log plot of n vs. runtime for sieve calculation

The sieve method is highly efficient in terms of its time complexity: the number
of operations needed to perform the entire sieve is proportional to

π(n)∑
i=1

n

pi
= n ln lnn+O(n) = O(n ln lnn),

or O(ln lnn) per sieve element [4]. Notice that the performance here for the
entire sieve is only slightly worse than trial division’s performance for a single
number, and in fact the sieve method is much more efficient per prime found for
large n. This is a consequence of problem reduction: as we test each new prime
pi, we reduce the number of elements to test in future iterations by n/p1 · · · pi.
However, the method’s weakness lies in its poor space complexity; the sieve
requires that a marker be stored for every number in the sieve, for a total of
O(n) bits of information. Thus, the sieve is only useful to us for relatively small
numbers, say, less than 1012 (i.e., less than about 1 TB of storage). There are
ways around this constraint, known as sieve segmentations, that split larger
sieves into blocks, evaluate each block sequentially, and save only the primes
from each block for evaluation in subsequent blocks. The space complexity for
a segmentation is O(π(n)), extending the sieve’s range to O(1014).

Primality Testing and Factorization Methods 5

3 Prime Factorization

Now that we have methods for determining the prime numbers, we can pro-
ceed with the task of decomposing numbers into their prime factors. In class,
we covered several factorization methods, including trial division and Fermat’s
method, both deterministic algorithms with exponential runtime. In this sec-
tion, we will cover a probabilistic algorithm known as the Pollard rho method,
and explore in detail Pomerance’s quadratic sieve method, which is subexpo-
nential. We will also discuss a method specifically useful for cracking multiple
RSA keys.

3.1 The Pollard rho (ρ) Method

All of the other methods described in this paper are deterministic; given a
particular input, they provide the same output no matter how many times they
are run. In 1975, however, John Pollard used an observation about functions
defined on discrete finite sets to create a probabilistic factorization method—one
that may give different factors for n, determined randomly at runtime [7].

Pollard’s observation is as follows: Let n ∈ Z+ and p the least prime factor of
n. If S = {1, 2, . . . , p− 1}, then we can define a function f = x2 + a mod p for
some a ∈ S such that for any s ∈ S, the sequence

s, f(s), f(f(s)), . . .

will eventually begin to repeat itself (i.e., will be cyclic). We can conceptualize
this cyclic behavior with the Greek letter ρ,6 and a probabilistic argument will
show that the repetition occurs within O(

√
p) iterations.

Under reasonable circumstances, we do not know the value of p, and so f
is impossible to compute. Pollard’s breakthrough was to construct another
function F = x2 + a mod n that exhibits similar cyclic behavior as f with-
out recourse to the value of p. In fact, F ≡ f mod p, and if we let F (i)(x)
denote the action of F on x taken i times, then there exists i ≥ 0 such
that 2i = O(

√
p) and F (i)(s) ≡ F (2i)(s) mod p. In that case, the number

g = gcd(F (i)(s)− F (2i)(s), n) is a multiple of p. If g 6= n, then g is a nontrivial
factor.

Algorithm (Pollard ρ method). Given a composite integer n,

1. Randomly choose integers a ∈ [1, n− 3]7 and s ∈ [0, n− 1].

2. Define F (x) = (x2 + a) mod n.

6Imagine the tail of the ρ depicting the non-cyclic part of the sequence, leading into the
body of the ρ, the cyclic part.

7We could in theory allow a ∈ [0, n − 1], but it turns out that the additional choices of a
in this set perform poorly in the algorithm, i.e., we are only guaranteed a factor after more
than O(

√
p) iterations, if at all. Thus, it behooves us to limit our choices.

Primality Testing and Factorization Methods 6

3. Set U = V = s.

4. Iterate U and V as follows:

• U = F (U),

• V = F (2)(V).

5. Calculate g = gcd(U − V, n).

6. If g = 1, go back to Step 4. If g = n, go back to Step 1.

7. Return g.

The algorithm is probabilistic in that the values of a and s are chosen randomly.
It is possible that certain combinations of a and s work with prime factors other
than p, and thus the result obtained by the algorithm will likely differ from run
to run, and these results might not even share any factors between them.

Step 4 may be repeated up to O(
√
p) times, for an operation complexity of

O(p1/2) ·O(N lnN) ≈ O(n1/4 lnn ln lnn),

assuming p is of maximum order proportional to
√
n.

3.2 The Quadratic Sieve

So far, the factorization methods discussed have run no faster than exponential
time. But there are several factorization methods that are faster than this. We
will discuss a method that runs in subexponential time—proportional to O(en

ε

)
for some ε > 0.

This method—the quadratic sieve method, created by Carl Pomerance in 1981
[8]—involves sieving integers for a quality called smoothness. A number is B-
smooth if all of its prime factors are less than B. The quadratic sieve uses a
series of B-smooth numbers to construct quadratic congruences modulo n that
result in some factor of n.

The Quadratic Sieve

Suppose n is an odd composite that is not a power. We will consider the
sequence of values

x2 mod n for x = d
√
ne, d
√
ne+ 1, . . .

that are B-smooth for some B of our choice. Let us put an extra condition on
smoothness here: we will consider only the x2 − n whose prime factors are the
primes less than B that are quadratic residues modulo n. Each such prime pi
will produce two integers ±ai, such that a2i ≡ n mod pi; these are the quadratic
residues of n modulo pi.

Primality Testing and Factorization Methods 7

We shall sieve the above sequence for these primes. Notice that if pi | x2 − n,
then x ≡ ±ai mod pi; thus, we can quickly divide out each pi from the x2 − n
in our sequence. If some x2 − n is B-smooth, then after division by each prime
power pai ≤ B, it will equal 1. This gives us a very quick way to determine
B-smooth values xi.

Suppose we find π(B) + 1 such B-smooth values x1, x2, . . . , xk. Then as a
consequence of a result from linear algebra, the product of some subset of these
xi will be a perfect square modulo n, i.e., for some i, . . . , j,

u2 = (xi . . . xj)
2 ≡ ai · · · aj = v2 mod n.

If u 6≡ ±v mod n, then n | (u + v)(u − v), but n - u + v and n - u − v; hence,
gcd(u+ v, n) and gcd(u− v, n) must be factors of n.

Algorithm (Quadratic Sieve [4]). Given an odd composite integer n that is
not a power,

1. Choose a smoothness boundB. In most cases, the optimalB ≈ de.5
√
lnn ln lnne.

2. Find the factor base F = {2} ∪ {p ≤ B | p odd prime and (np) = 1}.

3. For each prime pi ∈ F , find ±ai mod pi such that a2i ≡ n mod pi.

4. Sieve the sequence of values x2 − n for x = d
√
ne, d
√
ne + 1, . . . for B-

smooth values, stopping when you have found π(B) + 1 of them. For each
B-smooth value, save the pair (x, x2 − n).

5. Find the prime factorization
∏
peii of each B-smooth value found, and set

vi = (e1, e2, . . . , e|F |).

6. Form a matrix in Z2 with each row i being vi reduced modulo 2.

7. Find the null space for this matrix (i.e., a collection of vectors V with
entries from Z2 where

∑
V = 0).

8. For each vector V in the null space:

(a) Compute u =
∏
i,Vi=1 xi.

(b) Compute v =
√∏

i,Vi=1(x2i − n) from the prime factorizations of the

values x2i − n.

(c) Compute gcd(u + v, n) and gcd(u − v, n). If each does not equal 1,
return them.

The complexity for the quadratic sieve is dominated by the sieving process.
We must find at most π(B) + 1 values that are each B-smooth, and perform
operations on a (π(B) + 1)×B matrix; hence, the sieve’s runtime is8

O(π(B)) ·O(B) ∼ O(B2) ≈ O(e.5
√
lnn ln lnn).

8It should be noted that the complexity for the quadratic sieve is found only through an
heuristic argument; a rigorous proof eludes us.

Primality Testing and Factorization Methods 8

Figure 3: log-log plot of n vs. runtime of the quadratic sieve

Figure 3 depicts a log-log plot of n vs. the runtime of the quadratic sieve to factor
n. Notice that it grows faster than linearly, implying that the quadratic sieve is
at least superalgebraic, consistent with our claim that it is subexponential (the
latter implies the former).

There is a modified form of the quadratic sieve, known as the number field sieve,
that implements essentially the above process to find quadratic residues on a pair
of polynomial rings Z[r1] and Z[r2] instead of on Z, which is currently the fastest
known factorization method [5]. Due to the complexity of the mathematics
behind the details of its implementation, it has been omitted.

3.3 Factoring Multiple RSA Keys: The Batch GCDMethod

In general, RSA keys are very difficult to factor: the largest RSA modulus
factored by standard algorithms has 768 bits (232 decimal digits) [2], and the
current standards for most high-level encryption services use 1024- or 2048-bit
RSA moduli. However, if a large collection of RSA keys (say, O(106) of them)
are constructed using primes given by a faulty random-number generator, a
significant number of those keys may share prime factors.

The batch GCD algorithm exploits this weakness in real-world RSA key gen-
eration [3]. Suppose two distinct RSA keys N1 and N2 share a factor, that is,
d = gcd(N1, N2) > 1; then, since Ni = piqi for prime pi and qi, it must be the
case that either d = p1 or d = q1. Thus, if we find that two keys share fac-
tors, we can quickly factor both keys using their GCD. The batch GCD process

Primality Testing and Factorization Methods 9

performs this quickly on large sets of keys {N1, N2, . . . , Nm} by calculating:

gcd (N1, N2N3 . . . Nm),

gcd (N2, N1N3 . . . Nm),

· · ·
gcd (Nm, N1N2 . . . Nm−1).

Algorithm (Batch GCD). Given a list {N1, N2, . . . , Nm} of integers,

1. Calculate N = N1N2 · · ·Nm.

2. Create a list G of length m.

3. For each i = 1, 2, . . . ,m:

• Calculate Ri = N mod N2
i .

• Set Gi = gcd(Ni, Ri/Ni) = gcd(Ni, N/Ni).

4. Return G.

Notice that {Ni | Gi > 1} is the set of keys that share a factor with some other
key in the list. Most of the time, Gi is prime and thus a nontrivial factor of Ni.
By recognizing these prime Gi, we can factor the corresponding keys Ni.

9

The batch GCD method requires calculating m GCDs, for a complexity of

m ·O(N2) = O(m ln2 n).

9In the less frequent case, Gi is composite ⇐⇒ Gi = Ni. Then there exist some
Nj , Nk ∈ B, with i 6= j 6= k, such that pi | Nj and qi | Nk. It is possible to have some subset
of C ⊆ B where each Ni ∈ C fits this criterion. In such a case, the elements of C form one
or more cyclic chains of factor sharing, e.g., N1 = p1p2, N2 = p2p3, and N3 = p3p1. Batch
GCD does nothing to help us here. Luckily, this setup is relatively rare in practice.

Primality Testing and Factorization Methods 10

References

[1] Adleman, L.; R. Rivest; A. Shamir: “A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems,” Communications of the ACM,
Volume 21, Issue 2, 120-126 (1978).

[2] Aoki, K.; Bos, J.; Franke, J.; Gaudry, P.; Kleinjung, T.; Kruppa, A.;
Lenstra, A.; Montgomery, P.; Osvik, D.; Riele, H.; Thomé, E.; Timofeev,
A.; Zimmermann, P.: “Factorization of a 768-bit RSA modulus,” Cryptol-
ogy ePrint Archive, Report 2010/006 (2010).

[3] Bernstein, D.; N. Heninger; T. Lange: “FactHacks: RSA factorization in
the real world,” facthacks.cr.yp.to (2012).

[4] Crandall, R.; C. Pomerance: Prime Numbers: A Computational Perspec-
tive, Second Edition (2005).

[5] Lenstra, A.; H. Lenstra; M. Manasse; J. Pollard: “The development of the
number field sieve,” Lecture Notes in Mathematics, Volume 1554, 11-42
(1993).

[6] Nicomachus: Introduction to Arithmetic, Volume I, 13 (year unknown).

[7] Pollard, J.M.: “A Monte Carlo method for factorization,” BIT Numerical
Mathematics, Volume 15, Issue 3, 331-334 (1975).

[8] Pomerance, C: “Smooth Numbers and the Quadratic Sieve,” Algorithmic
Number Theory, Volume 44, 69-81 (2008).

http://facthacks.cr.yp.to

	The RSA Algorithm
	Primality Testing
	Trial Division
	The Sieve of Eratosthenes

	Prime Factorization
	The Pollard rho () Method
	The Quadratic Sieve
	Factoring Multiple RSA Keys: The Batch GCD Method

