Barycentric Lagrange Interplation

As discussed by Jean-Paul Berrut and Lloyd N. Trefethen (2004)
Maximilian Jentzsch, Math 56 Final Project
Instructor: Dr. Alex Barnett

Lagrange interpolation

Given a set D_{n} of $n+1$ nodes x_{n} with corresponding values f_{n}, we ain to contruct the polynomial that satisfies

$$
p\left(x_{j}\right)=f_{j} j=0, \ldots, n
$$

This data set can be interpolated by the Lagrange form of the interpolatio polynomial [3]

$$
p_{01 \ldots n}(x)=\sum_{j=0}^{n} l_{j}(x) f\left(x_{j}\right),
$$

$$
\begin{equation*}
l_{j}(x)=\frac{\prod_{k=0, k \neq j}^{n}\left(x-x_{k}\right)}{\prod_{k=0, k \neq j}^{n}\left(x_{j}-x_{k}\right)} \tag{2}
\end{equation*}
$$

One must note that there are several issues with Lagrange's formula

1. Each evaluation of $p(x)$ requires
$O\left(n^{2}\right)$ additons and multiplications. 2. Adding a new data par ($x_{n+1} f$ 2. Adding a new data pair $\left(x_{n+1}, f_{n+1}\right)$
requires an entirely new computation of every l_{j}.
2. The computation can be numerically unstable
two.
Improved Lagrange Formula Note that the numerator of (2) can be written as
$l(x)=\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n}\right)$ Define the barycentric weights by
$w_{j}=\frac{1}{\prod_{k \neq j}\left(x_{j}-x_{k}\right)}, j=0, \ldots, n$
Now, l_{j} can be written as

$$
l_{j}(x)=l(x) \sum_{j=0}^{n} \frac{w_{j}}{x-x_{j}} f_{j}
$$

which yields the new form of (1):

$$
p(x)=l(x) \sum_{j=0}^{n} \frac{w_{j}}{x-x_{j}} f_{j}
$$

This improved formula now requires $O\left(n^{2}\right)$ floating point operations (flops) o calculate quantities independent of x . To evaluate p, only $O(n)$ flops are reuired
In addition, this formula can now eas ily be updated with a new Data set from (3) by ($x_{j}-x_{n+1}$), and then computing w_{j} using (3). The addition of a new Data set therefore requires a mere $O(n)$ flops, instead of an entire recalculation of every l_{j}.

The Barycentric Formula

Equation (4) can still be written in an ven nicer form. The interpolant of the stant function 1 is itself. Plugging to (4) yields
$1=\sum_{j=0}^{n} l_{j}(x)=l(x) \sum_{j=0}^{n} \frac{w_{j}}{x-x_{j}}$.
Dividing (4) by the interpolation of 1 , (x) cancels and gives the so-called arycentric formula for p :

$$
\begin{equation*}
p(x)=\frac{\sum_{j=0}^{n} \frac{w_{j}}{x-x_{j}} f_{j}}{\sum_{j=0}^{n} \frac{w_{j}}{x-x_{j}}} \tag{5}
\end{equation*}
$$

The barycentric formula is still a L range formula where the weights u_{j} can be updated with a new data pal $\left.x_{n+1}, f_{n+1}\right)$ using $O(n)$ flops. In ad dition, there exist explicit formulas for he barycentric weights w_{j} when using tating their computation:

1. Equidistant: $w_{j}=(-1)^{j}\binom{n}{j}$
2. Chebyshev: $w_{j}=(-1)^{j} \delta_{j}$, where
$\delta_{j}=\frac{1}{2}$ when $j=0$ or $j=n$ and $\delta_{j}=\frac{1}{2}$ when $j=0$ or $j=n$ and
$\delta_{j}=1$ otherwise.

Runge Phenomenon

The use of equidistant nodes in any type of interpolation poses one big problem. For large N , the different weights w_{j} vary by exponentially large factors [1]. This makes polynomial interpolation with equidistant points illconditioned. Figures 1 and 2 demon-
strate this problem. At the "edges" of strate this problem. At the "edges" of
the interpolation, the approximations do not converge with increasing N . As can be seen in the Figures, the maximum error eventually grows exponentially. It can be shown that the error can grow as fast as 2^{N} [4]. This phenomenon, which is more extreme than the Gibbs nomenon.

Figure 1: Barycentric Lagrange Interpolation with varying

Figure 2: Maximum Error with increasing N
To overcome this problem, unevenly used. There are different types of such
points, but here we shall focus on the most common and simplest kind, the Chebyshev points. Figure 1 shows that the interpolation works well in the cen ter, but fails at the edges. Chebyshe points, which have a density $\sim \frac{N}{\pi \sqrt{1-x^{2}}}$
can fix this issue (See [4] for more in can fix this issue (See [4] for more in formation).

Convergence Rates of Smooth Functions

Let f be analytic on an inside an el lipse in the complex plane with foci [$1,1]$ and axis lenghts 2 L and 21 . When Chebyshev points are used, the inter polant converges exponentially as $N \rightarrow$
∞ [4]. In addition the interpolants p satisfy the error estimate tisfy the error estimate
$\max _{x \in[-1,1]}\left|f(x)-p_{N}(x)\right| \leq C K^{-N}$ for some constants C and $\mathrm{K}_{6} 1[1,2, \mathrm{p}$.
$508, \mathrm{p} .173]$. If the condition 508, p. 173]. If the conditions above are
satisfied then $K=L+l$ and K denotes the convergence rate. Note that the con vergence rate depends on the poles of f, and that a larger region of analyticity also results in a higher convergence rate [1]. Figure 3 shows the convergence of several functions with increasing N
We will also calculate their convergence rates: rates.

1. $f(x)=\frac{\exp (x)}{\cos (x)}: K=\frac{\pi}{2}+\sqrt{\frac{\pi^{2}}{4}-1} \approx$

Note that there is a mistake in [11, wher
Nerm under the square root is $\pi^{2}-$
2. $f(x)=\frac{1}{1+12 x^{2}}: K=\frac{1}{\sqrt{12}}+\sqrt{\frac{13}{12}} \approx 1.3295$
3. $f(x)=\frac{1}{1+50 x^{2}}: K=\frac{1}{\sqrt{50}}+\sqrt{\sqrt{50}} \approx 1.1514$ 4. $f(x)=a b s(x)$ is not analytic on $[-1,1]$ be $f(x)=\operatorname{abs}(x)$ is not analytic on $[-1,1]$ be
cause it is not differentiable at $x=0$. The interpolation does not seem to converge (a least exponentially),
5. $f(x)=\tan (x)$: we would expect this func
tion to have a ver similar convergence rate

Dartmouth

Figure 3: Convergence Rates of Different
Functions

References

1] Jean-Paul Berrut and Lloyd N Trefethen. Barycentric Lagrange 46(3):501-517, 2004
[2] Bengt Fornberg. A Practical Guid to Pseudospectral Methods. Canbridge University Press, 1996
3] Nabil R. Nassif and Dolly K Fayyad. Numerical Analysis and scientific Compuitin. CRC Pre 2014.

J Lloyd N. Trefethen. Spectral Meth ods in Matlab, chapter 5. Poly Grids, pages 41-50. SIAM, 2000.

