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Lagrange interpolation
Given a set Dn of n + 1 nodes xn
with corresponding values fn, we aim
to contruct the polynomial that satisfies

p(xj) = fj j = 0, . . . , n

This data set can be interpolated by
the Lagrange form of the interpolation
polynomial [3]

p01...n(x) =

n∑
j=0

lj(x)f (xj), (1)

where

lj(x) =

∏n
k=0, k 6=j(x− xk)∏n
k=0, k 6=j(xj − xk)

(2)

One must note that there are several
issues with Lagrange’s formula:
1. Each evaluation of p(x) requires
O(n2) additons and multiplications.

2. Adding a new data pair (xn+1, fn+1)
requires an entirely new computation
of every lj.

3. The computation can be numerically
unstable.

This poster will focus on points one and
two.

Improved Lagrange Formula
Note that the numerator of (2) can be
written as

l(x) = (x− x0)(x− x1) . . . (x− xn)
Define the barycentric weights by

wj =
1∏

k 6=j(xj − xk)
, j = 0, . . . , n

(3)
Now, lj can be written as

lj(x) = l(x)
n∑
j=0

wj
x− xj

fj

which yields the new form of (1):

p(x) = l(x)

n∑
j=0

wj
x− xj

fj (4)

This improved formula now requires
O(n2) floating point operations (flops)
to calculate quantities independent of x.
To evaluate p, only O(n) flops are re-
quired.

In addition, this formula can now eas-
ily be updated with a new Data set
(xn+1, fn+1) just by dividing each wj
from (3) by (xj−xn+1), and then com-
puting wj using (3). The addition of a
new Data set therefore requires a mere
O(n) flops, instead of an entire recalcu-
lation of every lj.

The Barycentric Formula
Equation (4) can still be written in an
even nicer form. The interpolant of the
constant function 1 is itself. Plugging 1
into (4) yields

1 =

n∑
j=0

lj(x) = l(x)
n∑
j=0

wj
x− xj

.

Dividing (4) by the interpolation of 1,
l(x) cancels and gives the so-called
barycentric formula for p:

p(x) =

∑n
j=0

wj
x−xjfj∑n

j=0
wj
x−xj

(5)

The barycentric formula is still a La-
grange formula where the weights wj
can be updated with a new data pair
(xn+1, fn+1) using O(n) flops. In ad-
dition, there exist explicit formulas for
the barycentric weights wj when using
equidistant or Chebyshev nodes, facili-
tating their computation:
1. Equidistant: wj = (−1)j

(n
j

)
2. Chebyshev: wj = (−1)jδj, where
δj = 1

2 when j = 0 or j = n and
δj = 1 otherwise.

Runge Phenomenon
The use of equidistant nodes in any type
of interpolation poses one big prob-
lem. For large N, the different weights
wj vary by exponentially large fac-
tors [1]. This makes polynomial in-
terpolation with equidistant points ill-
conditioned. Figures 1 and 2 demon-
strate this problem. At the “edges” of
the interpolation, the approximations do
not converge with increasing N. As can
be seen in the Figures , the maximum
error eventually grows exponentially. It
can be shown that the error can grow
as fast as 2N [4]. This phenomenon,
which is more extreme than the Gibbs
phenomenon, is called the Runge phe-
nomenon.

Figure 1: Barycentric Lagrange Interpolation
with varying N

Figure 2: Maximum Error with increasing N

To overcome this problem, unevenly
distributed interpolation points must be
used. There are different types of such

points, but here we shall focus on the
most common and simplest kind, the
Chebyshev points. Figure 1 shows that
the interpolation works well in the cen-
ter, but fails at the edges. Chebyshev
points, which have a density ∼ N

π
√
1−x2

can fix this issue (See [4] for more in-
formation).

Convergence Rates of
Smooth Functions
Let f be analytic on an inside an el-
lipse in the complex plane with foci [-
1,1] and axis lenghts 2L and 2l. When
Chebyshev points are used, the inter-
polant converges exponentially as N →
∞ [4]. In addition, the interpolants pN
satisfy the error estimate

maxxε[−1,1] |f (x)− pN (x)| ≤ CK−N

for some constants C and K¿1 [1, 2, p.
508, p. 173]. If the conditions above are
satisfied, thenK = L+l, and K denotes
the convergence rate. Note that the con-
vergence rate depends on the poles of
f, and that a larger region of analyticity
also results in a higher convergence rate
[1]. Figure 3 shows the convergence
of several functions with increasing N.
We will also calculate their convergence
rates:

1. f (x) = exp(x)
cos(x)

: K = π
2 +

√
π2
4 − 1 ≈

2.7822.
Note that there is a mistake in [1], where the
term under the square root is π2 − 1.

2. f (x) = 1
1+12x2

: K = 1√
12
+
√

13
12 ≈ 1.3295

3. f (x) = 1
1+50x2

: K = 1√
50
+
√

51
50 ≈ 1.1514

4. f (x) = abs(x) is not analytic on [-1,1] be-
cause it is not differentiable at x = 0. The
interpolation does not seem to converge (at
least exponentially).

5. f (x) = tan(x): we would expect this func-
tion to have a ver similar convergence rate as
exp(x)
cos(x) , since it also has nodes at ±1. Indeed,
Figure 3 shows this!

Figure 3: Convergence Rates of Different
Functions
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