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Abstract
This text discusses barycentric Lagrange interpolation based on the SIAM REVIEW ar-

ticle of Jean-Paul Berrut and Lloyd N. Trefethen [1]. It also offers additional background
information, as well as some MATLAB demonstrations.

Interpolation
Given a set Dn of n + 1 nodes x j with corresponding values f j where j = 0, . . . ,n, we aim to
construct the polynomial that satisfies

p(x j) = f j j = 0, . . . ,n

i.e. the polynomial interpolates Dn. Note that the f j do not necessarily have to correspond to a
function.

Theorem 1. There exists a unique polynomial pn(x) = p01...n(x) of degree less than or equal to n
interpolating Dn [3]

There are many different kinds of interpolation; here we focus on Lagrange interpolation.

Lagrange interpolation
This data set can be interpolated by the Lagrange form of the interpolation polynomial [3],

p01...n(x) =
n

∑
j=0

l j(x) f (x j), where (0.1)

l j(x) =
∏

n
k=0,k 6= j(x− xk)

∏
n
k=0,k 6= j(x j− xk)

, (0.2)

also called the Lagrangian cardinal functions [3]. These satisfy, ∀i, j = 0,1 . . .n:

li(x j) = δi j =

{
0 i f i 6= j
1 i f i = j

p01...n(xi) = fi
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Issues with Lagrange Interpolation One must note that there are several issues with Lagrange’s
formula. Here we shall focus on two specific issues:

1. Each evaluation of p(x) requires O(n2) additions and multiplications.

2. Adding a new data pair (xn+1, fn+1) requires an entirely new computation of every l j.

3. The computation can be numerically unstable.

This gave rise to recurrence forumulae such as Neville’s and Newton’s formula, but these will not
be discussed here. Instead, we shall focus on an improved Lagrange formula using barycentric
weights.

Improved Lagrange Formula
Note that the numerator of (0.2) can be written as

l(x) = (x− x0)(x− x1) . . .(x− xn)

Then define the barycentric weights by

w j =
1

∏k 6= j(x j− xk)
, j = 0, . . . ,n (0.3)

Now, l j can be written as

l j(x) = l(x)
n

∑
j=0

w j

x− x j

which yields the new form of (0.1):

p(x) = l(x)
n

∑
j=0

w j

x− x j
f j (0.4)

This improved formula now requires O(n2) floating point operations (flops) to calculate w j: n subtractions×
n multiplications+one division. After that, evaluating p, only requires O(n) flops.

In addition, this formula can now easily be updated with a new Data set (xn+1,yn+1) just by
dividing each w j from (0.3) by (x j− xn+1), and then computing w j using (0.3). The addition of a
new Data set therefore requires a mere 2n+2 flops, instead of an entire recalculation of all l j!

The Barycentric Formula
Equation (0.4) can still be written in an even nicer form. Dividing by one will achieve this result.
The interpolant of the constant function 1 is itself. Plugging 1 into (0.4) yields

1 =
n

∑
j=0

l j(x) = l(x)
n

∑
j=0

w j

x− x j
.
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Dividing (0.4) by the expression above, l(x) cancels and gives the so-called barycentric formula
for p:

p(x) =
∑

n
j=0

w j
x−x j

f j

∑
n
j=0

w j
x−x j

(0.5)

The barycentric formula is still a Lagrange formula where the weights w j can be updated with a
new data pair (xn+1,yn+1) using O(n) flops. Apart from the factor of f j, the w j in the numerator
exactly the same as the ones in the denominator. Therefore, any common factor in all of the weights
can be canceled without affecting p. For some node distributions, this allows for explicit formulae
to calculate the w j [1].

Using equidistant nodes for the interpolation, the barycentric weights w j can be written in an
explicit form. Let the spacing between the nodes be h = 2

n on the interval [−1,1]. The weights can
be directly calculated by

w j = (−1) j
(

n
j

)
. (0.6)

The use of equidistant nodes has one major disadvantage, discussed in the next section.

Runge Phenomenon
For large n, the different weights w j vary by exponentially large factors [1]. This makes polyno-
mial interpolation with equidistant points ill-conditioned. Figures 0.1a and 0.1b demonstrate this
problem. Here, the function 1

1+12x2 was interpolated via barycentric Lagrange interpolation (See
RungeDemo.m for more information).

Towards the “edges” of the interpolation, the approximations do not converge with increasing
N. The maximum error eventually grows exponentially (Figure 0.1b). It can be shown that the error
can grow as fast as 2N [4]. This phenomenon, which is more extreme than the Gibbs phenomenon,
is called the Runge phenomenon.

Chebyshev Points Figure 0.1a shows that the interpolation works well in the center, but fails at
the “edges”. To overcome this problem, unevenly distributed interpolation points must be used.
There are different types of such point distributions, but here we shall focus on the most common
and simplest kind, the Chebyshev points. These have a density ∼ N

π
√

1−x2 , so there will be more
points at the towards the ends, and less points in the center. The Chebyshev points of the second
kind can be computed by

x j = cos
jπ
n
, j = 0, . . . ,n (0.7)

In Figure 0.2, Chebyshev points are used to interpolate the same function. There is no Runge
phenomenon.
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(a) Interpolation using equidistant nodes

(b) Error of interpolation using equidistant nodes

Figure 0.1: Demonstration of the Runge phenomenon
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Figure 0.2: Overcoming the Runge Phenomenon with Chebyshev points

The weights w j for the barycentric formula (0.5) can also be calculated explicitly when using
Chebyshev points [1]:

w j = (−1) j
δ j, δ j =

{
1
2 when j = 0 or j = n
1 otherwise.

(0.8)

Every part in the interpolation now only requires O(n) steps.

Convergence Rates of Smooth Functions
Computation complexity is important, but whether or how fast the interpolations converges to the
function is at least as important.

Let f be analytic on an inside an ellipse in the complex plane with foci [-1,1] and axis lengths
2L and 2l. When Chebyshev points are used, the interpolant converges exponentially as N → ∞

[4]. In addition, the interpolants pN satisfy the error estimate

maxxε[−1,1] | f (x)− pN(x)| ≤CK−N

for some constants C and K>1 [1, 2, p. 508, p. 173]. If the conditions above are satisfied, then
K = L+ l, and K denotes the convergence rate. Note that the convergence rate depends on the
poles of f, and that a larger region of analyticity also results in a higher convergence rate [1].
Figure shows the convergence of several functions with increasing N. We will also calculate the
convergence rate, which we can observe to be the slope of the corresponding graphs.

1. f (x) = exp(x)
cos(x) : K = π

2 +
√

π2

4 −1≈ 2.7822.

Note that there is a mistake in [1], where the term under the square root is π2−1.
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Figure 0.3: Convergence of different functions

2. f (x) = 1
1+12x2 : K = 1√

12
+
√

13
12 ≈ 1.3295

3. f (x) = 1
1+50x2 : K = 1√

50
+
√

51
50 ≈ 1.1514

4. f (x) = |x| is not analytic on [-1,1] because it is not differentiable at x = 0. The interpolation
does not converge exponentially.

Convergence rate of |x| and further exploration
It is not surprising that |x| did not converge as rapidly as the other functions tested since analytic-
ity was a prerequisite for fast convergence. In Approximation Theory and Approximation Praxis
[5], Trefethen discusses the convergence rate of |x|. Using the concept of bounded variation, the
algebraic convergence rate of |x| was calculated (and observed) to be 1

n . However, this was not
explicitly for barycentric Lagrange interpolation, but for Chebyshev interpolants.

The convergence of |x| using barycentric Lagrange interpolation also seems to be algebraic (see
Figure 0.4), but by far not as fast. In addition, the maximum error always seems to come from one
particular area of the interpolant, which is not at x = 0. See supplemental MATLAB codes and
figures for some experimentation.

An additional area that would be very interesting to explore would be combining piecewise
barycentric Lagrange interpolants to improve the interpolation of functions such as |x|.
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Figure 0.4: Absolute Error of the interpolation of |x|
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Supplemental Figures: exploration of |x| convergence.
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(a) (b)

(c) (d)

Figure 0.5: |x| exploration
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