
RSA Encryption and the Pursuit of Large
Primes

Bryant Prieur

2 June 2014

1 Introduction

For a pretty long time, people have occasionally wanted to pass messages in
private - that is, in such a way that only the intended recipient will be able to
read the message. Unfortunately for those such people, there exists another
class of people that takes great interest in the communications of others. So
cryptography was born.

Figure 1: Motivations for Cryptography (Watterson)

The invention of the internet transitioned a great deal of communication
over to digital means such as email. This was, no doubt, tremendously
exciting for nosy people who understood the technology as a fair bunch of
these communications were completely unencrypted and relatively easy to
obtain. As such, several methods of encrypting these communications were
invented, among them: RSA Encryption.

1

2 RSA Encryption

The ”RSA” in RSA Encryption stands for Rivest-Shamir-Adleman, the sur-
names of those who patented1 the method in 1977. It belongs to the family
of ”public-key cryptosystems,” systems that rely on the existence of a public
key - well known and used to encrypt information - and a private key - known
only to the intended recipient and used to decrypt data.

The keys are mathematically linked, but it is difficult to obtain the private
key from the public. Essentially, these systems are ”hard to crack, but easy to
check.” So that if you already had the private key, you could simply decipher
the message. If you did not, you would be very sad as you frittered your life
away trying to.

With the general notion of the goals of the RSA Encryption method in
mind, let us examine the method itself. Before any mathetmatical encryption
can take place, any string of characters meant to be encrypted must be
transformed into a string of integers. This is a simple exercise in character
mapping - from one character to a string of digits. Once a recipient has
decoded their message to a string of digits, he or she need only apply the
mapping in reverse to obtain the original message.

The mathematical encryption relies on two prime integers, let us say p, q.
From here, we define n = pq, k = (p− 1)(q− 1) and d such that d and k are
relatively prime (that is, their greatest common factor is 1). Finally, let us
also choose e such that de ≡ 1(mod k)

Given these properties, it is true that bed ≡ b(mod n) for every b ∈ Z.
This is the heart of the encryption method. Taking the string of digits from
earlier, we split it into blocks such that the resulting integer in each block is
less than n. Let us call our block b.

The encrypter calculates the remainder of be/n, let us call this c and sends
this as the encrypted message. The recipient then calculates the remainder
of cd/n and receives b. What mathematical wizardy is this? It is merely an
application of the property that bed ≡ b(mod n) for every b ∈ Z.

Our first calculation for c is simply be ≡ c(mod n). In our second, we
find cd ≡ b(mod n) which is true because cd ≡ (be)d = bed ≡ b(mod n).
We have essentially used this property to go from be to bed which is congruent

1Rivest, Ronald L., Adi Shamir, and Leonard M. Adleman. Cryptographic Communi-
cations System and Method. Massachusetts Institute of Technology, assignee. Patent US
4405829 A. 14 Dec. 1977. Print.

2

to b. Up until now you have taken my word for it, but let us show this is
true:

We know that de ≡ 1(mod k), which is to say de − 1 = kt for some
integer t. Then we can rearrange that to say de = kt + 1. This gives us:

bed = bkt+1 = bktb = b(p−1)(q−1)tb = (b(p−1))(q−1)tb

Fermat’s Little Theorem then allows us to take this final result and say:

(b(p−1))(q−1)tb ≡ (1)(q−1)tb ≡ b(mod p)

The public portion of the system are the numbers n and e. With these,
anyone can perform an encryption. However, one cannot traverse the con-
gruency from b to bed without also knowing d. The number d is essentially
the private portion of the system. (You would also have to keep k secret as
given k, you can calculate d. This means keeping p, q secret as well, as they
would give you k. Of course, none of these values are actually used in the
decryption process so it may make the best sense to forget them.)

Someone attempting to crack the RSA system given only the public por-
tion of the system would therefore have to factor n into p and q. It is therefore
advisable to make n very difficult to factor - a value of n = 15 for instance
could be cracked by a 3rd grader. As such, we turn to the power of computing
to generate very large primes for use in RSA cryptography.

3 Generating Large Primes

3.1 The Sieve of Eratosthenes

A rather old method for generating primes, the Sieve of Eratosthenes finds
all primes less than or equal to n. To do so, we list the integers from 2 to
n. Every time we reach some number we haven’t crossed out, let us say x,
we consider it a prime and proceed jump x numbers ahead and cross out the
number we land on until we reach the end. Then we return to where we left
off and repeat.

Intuitively, this is easy to understand. We begin with 2, and cross of
its multiples as they are clearly composite numbers. The next number we
haven’t crossed of must be prime, so we cross off its multiples, so on and so
forth. Every number we reach that is not a multiple of those before it must
therefore be prime.

3

This is an effective method, but somewhat slow. Assuming we implement
it as described, we must generate the list, giving us n operations, and then
go through it for every number we reach. At worst, we have O(n!).

A better implementation checks values from the list as it is generated,
giving us O(n). If we desire truly large primes, we will have to do better.

3.2 The Sieve of Sundaram

This sieve was created in 1934 by P. Sundaram. This finds all odd prime
integers from 3 to 2n + 2. Starting from a list from 1 to n, it removes all
integers of the form i+ j + 2ij where i, j ∈ Z+ and 1 ≤ i ≤ j. All remaining
values are doubled and incremented by 1, giving us the primes between 3
and 2n + 2. (Of course, it cannot figure out that 2 is a prime, but you and I
know it is.)

To show this works, let us consider an excluded integer. It takes the form
i + j + 2ij, and let us apply the operation that would turn an integer not of
this form into a prime:

2(i + j + 2ij) + 1

2i + 2j + 4ij + 1

(2i + 1)(2j + 1)

Factoring the second line gives us the third, revealing that nontrivial
factors. Therefore, we have only received odd integers with trivial factors -
i.e. primes. As such, this sieve works at O(2n). It is slightly faster than the
Sieve of Eratosthenes, and certainly we could leave it running for a few hours
to generate some truly large prime integers.

4 Generating Very Large Primes

So far, we have obtained a lot of primes at once. However, things could go
faster if, instead, we managed to generate one value at a time and find out
it is a prime integer. One such way we might do this is through primality
testing.

4

4.1 Primality Testing

4.1.1 Fermat Primality Test

Fermat’s Little Theorem states that for a prime integer p and 1 ≤ a ≤ p, that
ap−1 ≡ 1(mod p). Therefore, a simple way to test the primality of some
supposed prime q is to choose an a such that 1 ≤ a ≤ q and see if aq−1 ≡ 1(
mod q). If not, clearly q is not a prime. However, if the statement holds,
then q might be a prime.

In a computational setting, we may randomly select values for a and
check. The more values we select, the better chance there is of having ob-
tained a prime. (Unfortunately, the realm of mathematics is an evil place
and there exist such things as Carmichael Numbers2 that, despite being com-
posite, pass the Fermat Primality Test for every a. Note this does not vi-
olate Fermat’s Little Theorem. My libraries include an implementation of
the Miller-Rabin Primality Test which weeds out Carmichael Numbers 3/4
times.)

4.2 Generating Large Numbers that Might be Primes

Given that we can test numbers for primality, it may simplify our life to try
to select numbers for testing that may already be prime. One such way to
do so is to select from the Mersenne Numbers. The nth Mersenne Number is
defined as:

Mn = 2n − 1

Clearly, these are all odd integers. This is convenient, as only one even
integer is prime. Let us now rule out a few Mersenne Numbers as composite.
Let us consider a, b ∈ Z. We may have:

Mab = 2ab − 1

Unfortunately, this is factorable:

Mab = 2ab − 1 = (2a − 1)(1 + 2a + 22a + ... + 2(b− 1)a)

2Carmichael, R. D. ”Note on a New Number Theory Function.” Bulletin of the Amer-
ican Mathematical Society 45.4 (1939): 269-74. Web.

5

From this, we know that all composite values of n result in composite
Mersenne Numbers. But therefore, we may use small prime values (such as
generated by our earlier sieves) to create much larger numbers that have a fair
chance of being prime. We may then test their primality to be sure. Given
all this, we have generated large primes that will have a difficult-to-factor
product for use in RSA cryptography.

6

