Proof of superexponential convergence

Math 56

Alex Barnett

April 1, 2013

Consider the Taylor series for exp about x = 0,

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

Here we prove that this series is super-exponentially convergent, i.e. for each rate r > 0, no matter how small, ε , the error in truncating to n terms, is $O(r^n)$.

This implies that on a semi-log plot (log ε vs n), the graph has increasingly negative slope.

Proof. Given location x, and rate r > 0, then choose integer N > |x|/r. Then, for $k \ge N$, a single term has the bound

$$\frac{|x^k|}{k!} \le \frac{N^N}{N!} \cdot \frac{|x|^k}{N^k} \le Cr^k$$

(Why? Make sure you understand this. C can be large but is always const wrt k.) So the tail is bounded as usual by $\varepsilon \leq C \sum_{k>n} r^k = O(r^n)$ for all $n \geq N$.

Note that this arbitrarily high rate of exponential convergence corresponds to e^x being analytic in arbitrarily large discs around the origin. This is called an *entire* function.