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Consider the Taylor series for exp about x = 0,
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Here we prove that this series is super-exponentially convergent, i.e. for each
rate r > 0, no matter how small, ε, the error in truncating to n terms, is O(rn).

This implies that on a semi-log plot (log ε vs n), the graph has increasingly
negative slope.

Proof. Given location x, and rate r > 0, then choose integer N > |x|/r. Then,
for k ≥ N , a single term has the bound
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(Why? Make sure you understand this. C can be large but is always const
wrt k.) So the tail is bounded as usual by ε ≤ C

∑
k>n

rk = O(rn) for all
n ≥ N .

Note that this arbitrarily high rate of exponential convergence corresponds
to ex being analytic in arbitrarily large discs around the origin. This is called
an entire function.
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