Math 56 Compu \& Expt Math, Spring 2014: Topics Weeks 1-3 (Midterm 1)

1 Week 1

Relative vs absolute error

$\operatorname{Big} O$, little o. Know definitions, be able to test if one func is O or oon another, as some parameter goes large or small.

Algebraic convergence, order. Know how to bound tail of algebraic series by integral.
Exponential convergence, rate. How to bound tail by pulling out a geometric series. Thm that rate is asymptotically (dist from eval pt to center)/(nearest dist of singularity to center)

How to choose good axes for a plot so data spread and linear, interpret slope.
Definition of superexponential convergence.
Basic complex arithmetic, magnitude-phase notation.

2 Week 2

Taylor's theorem with correct remainder term, using it to bound err. eg using to prove super-exp conv for $\exp (\mathrm{x})$

Newton's iteration. Definition of quadratic convergence (ie $\varepsilon_{n+1} / \varepsilon_{n}^{2} \leq C$), sketch of proof that Newton's is quadr conv. Newton's for computing sqrt. Bisection alg from HW.

Set of floating point numbers, their gaps, error due to rounding ie $f \ell(x)$. Defn of $\varepsilon_{\text {mach }}$. Rules of floating point arithmetic (rounding combined with $+-\times /$)

Sum numbers in magnitude smallest to largest, and why other order is worse.
Catastrophic cancellation, spotting it and predicting its size by chasing epsilons (keeping only dominant ones); using math to rewrite a formula to avoid it.

Relative condition number of a problem $\kappa(x)$, defn. Intuitive consequence for expectation of relative accuracy for evaluation of a function (this is formalized by Bkw Stab Thm below).

3 Week 3

Finite differencing to approximate derivatives. One-sided, centered, and 3-pt stencil. How to get their orders and estimating CC error associated with finite-precision evaluation of the function. (Advanced: optimal choice of h by equating the two sources of error.)

Backwards stability: definition, concept, how to test for it applying rules of floating point to simple functions $f(x)$ or $f\left(x_{1}, x_{2}\right)$, ie one or two inputs.

Bkw Stab Thm: a bkw stab algorithm's relative err bounded by $\kappa(x) O\left(\varepsilon_{\text {mach }}\right)$, apply it.
Roots of unity in complex plane, eg solving $z^{n}=c$ for n integer, $c>0$ real.
2-norm of a vector, and (induced) norm of a matrix $\|A\|$, definition, understanding in terms of largest growth factor (longest semi-axis of ellipsoid produced when A acts on unit sphere). Formula from HW3: $\|A\|=\sqrt{\lambda_{\max }\left(A^{T} A\right)}$.

Condition number of a matrix $\kappa(A)=\|A\| \cdot\left\|A^{-1}\right\|$, and that it is worst-case bound of κ for the linear system $A \mathbf{x}=\mathbf{b}$, with respect to input data $\mathbf{b} .{ }^{1}$

4 Topics removed since 2013

Stability (as opposed to backward stability). Thus 2013 Midterm 1 6(e) is not relevant for us.

5 Practise questions

Also see worksheets, homeworks, Quiz 1 from 2013 and 2014, and midterm 1 from 2013.

1. Is $\frac{e^{n}}{10-n e^{n}}=O\left(n^{-1}\right)$ as $n \rightarrow \infty$? Prove it.
2. Prove if $\log x=O(x)$ as $x \rightarrow \infty$? As $x \rightarrow 0$?
3. Is $\log n=o\left(\log \left(n^{2}\right)\right)$ as $n \rightarrow \infty$? If so prove it; if not, what else can be said?
4. is $\cos (n) e^{-\sqrt{n}}=O\left(n^{-10}\right)$ as $n \rightarrow \infty$?
5. Write a Newton iteration to solve $x^{3}-x=1$. What function of the error creates a linear graph when plotted vs iteration number n ?
6. Use Taylor's theorem to give a simple upper bound on the absolute error in approximating $\cos x$ by $1-x^{2} / 2$ which applies in $|x|<0.5$.
7. Fixing any $x>0$ and $r>0$, show that the n-term Taylor series for e^{x} about 0 has error $O\left(r^{n}\right)$. State the type of convergence this implies.
8. Estimate the relative error introduced when a floating point machine evaluates $f(x)=1+x$.
9. Write all solutions to $z^{3}=8 i$ in the form $r e^{i \theta}$.
10. The matrix A turns the vector $(3,4)$ into the vector $(5,12)$. Use this to give a bound on $\|A\|$ (upper, lower?) Also use it to give a bound on $\left\|A^{-1}\right\|$ (upper, lower?)

[^0]11. Use Taylor's theorem to bound the error of the centered-difference formula for $f^{\prime}(x)$, ie evaluating at $x \pm h / 2$, in exact arithmetic. (This is the "Taylor error".) State the convergence type and order/rate. BONUS: If relative errors in evaluating f are $O\left(\varepsilon_{\text {mach }}\right)$ what is an optimal choice for h ? (Ignore constants size $O(1)$.)

12. Compute the norm of matrix $A=\left[\begin{array}{ll}1.001 & 1 \\ 1 & 1\end{array}\right]$. How many digits of accuracy do you expect in worst-case for linear system involving A ? (An exact computation of κ is messy; feel free to make approximations).
13. Bindel-Goodman Ex. 4.6.8.
14. From X-hr: a) Prove if $2 N^{3}+N^{2}=O\left(N^{2}\right)$ as $N \rightarrow \infty$ b) Prove if $\sin x \log x=o(x)$ as $x \rightarrow \infty$ c) Prove if $10 \sin x=O(x)$ as $x \rightarrow 0 \mathrm{~d}$) Prove if $10 \tan x=O(x)$ as $x \rightarrow 0$.
15. Write a Newton iteration to solve $x^{3}-x=1$. What function of the error creates a linear graph when plotted vs iteration number n ?
16. What is a rigorous bound on the error of the unsymmetric finite-difference approx $f^{\prime}(x) \approx \frac{f(x+2 h)-f(x-h)}{3 h}$? Use exact arithmetic (ignore rounding error). Your bound should hold for all $h>0$ and may involve properties of f. Then write it in big-O notation.
17. Now accounting for floating point error (assume f evaluated to $\varepsilon_{\text {mach }}$), what is the optimal h to get the best accuracy in the previous question? What roughly is this accuracy?

6 Some practise question answers

1. Yes. To prove use $10 /\left(n e^{n}\right)<2$ for all $n>1$, so $n_{0}=1$ and $C=2$.
2. l'Hôpital's rule both times. Ans: Yes, no.
3. No. But it's big-O.
4. Yes, and it's little-o too.
5. $x_{n+1}=x_{n}-\frac{x_{n}^{3}-x_{n}-1}{3 x_{n}^{2}-1}$. Quadratic convergence, so $\log \left(\log 1 / \varepsilon_{n}\right)$ vs n linear.
6. We're using terms 0,1 (which has zero coefficient), and 2 here, so the thm says error (call ε) is bounded by the next (3rd) term but with x in the derivative replaced by unknown q in the interval. $\varepsilon=f^{\prime \prime \prime}(q)(x-0)^{3} / 3$!. So an upper bound over the interval is $|\varepsilon| \leq(.5)^{3} / 3!=1 / 48$.
7. Taylor theorem, then $\lim _{n \rightarrow \infty}(x / r)^{n} / n!=0$, so is bounded by a const for all sufficiently large n. Super-exponential convergence.
8. No more than $\frac{2|x|+1}{x+1} \varepsilon_{\text {mach }}$.
9. geom gives $2 e^{i \theta}$ where $\theta=\pi / 6,5 \pi / 6,9 \pi / 6$ since each angle when tripled gives $\pi / 2$
10. $\|A\| \geq 13 / 5 .\left\|A^{-1}\right\| \geq 5 / 13$.
11. abs err upper bnd $\left(h^{2} / 12\right) \cdot \max _{q \in(x-h, x+h)}\left|f^{\prime \prime \prime}(q)\right|=O\left(h^{2}\right)$ ie 2nd-order algebraic convergence. As in lecture. Evaluation error causes $O\left(\varepsilon_{\text {mach }} / h\right)$ error in answer. Bonus: balancing this against $O\left(h^{2}\right)$ gives $h=\varepsilon_{\text {mach }}^{1 / 3}$.
12. norm is about $\sqrt{2}$ (I didn't do exactly). $\kappa(A)$ is about 10^{3}, so roughly expect 13 digits in solution.
13.
14. no, no, yes, yes. For the trig you can use the leading terms $\sin x=x+O\left(x^{3}\right)$ and $\tan x=x+O\left(x^{3}\right)$ for small x.
15. $x_{n+1}=x_{n}-\frac{x_{n}^{3}-x_{n}-1}{3 x_{n}^{2}-1}$. Quadratic convergence, so $\log \left(\log 1 / \varepsilon_{n}\right)$ vs n linear.
16. absolute error is $O(h)$.
17. $h=O\left(\varepsilon_{\text {mach }}^{1 / 2}\right), 8$ digits.

[^0]: ${ }^{1}$ for that matter, A too, but we didn't do that

