Do the following questions:

1. Decide whether computing $2 x$ via the algorithm $x+x$ is backward stable.
2. Decide whether computing 1 via the algorithm $\frac{x}{x}$ is backward stable.
3. True or False? Prove your answer.
(a) $\sin (x)=O(1)$ as $x \rightarrow \infty$
(b) $\sin (x)=O(1)$ as $x \rightarrow 0$
(c) $n^{\frac{1}{n}}=O(1)$ as $n \rightarrow \infty$
(d) $\sin (1 / n)=O\left(n^{-1}\right)$ as $n \rightarrow \infty$
(e) $(1+\epsilon)(1+\epsilon)=1+O(\epsilon)$ as $\epsilon \rightarrow 0$
4. Consider the linear system:

$$
\frac{1}{2}\left(\begin{array}{cc}
1001 & 999 \\
999 & 1001
\end{array}\right)\binom{y_{1}}{y_{2}}=\binom{b_{1}}{b_{2}}
$$

Suppose that we have a backward stable method to solve for the y vector (you may assume that the constant in the backward stable method is order 1). How many digits of accuracy (relative to $\|y\|$) do you expect in the solution using this backward stable method?
5. Consider the function:

$$
\begin{cases}e^{\frac{-1}{x^{2}}} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

It turns out this function is infinitely differentiable (so you can apply things like Taylor's Theorem).
(a) Come up with a rigorous bound on the error when trying to use the first order Taylor series expansion at 0 to compute $f(1)$? Something you might find useful:

$$
f^{\prime \prime \prime}(x)=\frac{4 e^{-1 / x^{2}}\left(6 x^{4}-9 x^{2}+2\right)}{x^{9}}
$$

for $x \neq 0$ and the only root of $6 x^{4}-9 x^{2}+2$ between 0 and 1 is roughly 0.52 .
(b) Can you come up with a guess for the Taylor series expansion of f centered at 0 ? Does the Taylor series for f centered at 0 converge to f at all?
(c) What must be true about f so that we do not contradict another beloved theorem about convergence of Taylor series?

