PS #1 — Linear algebra overview and vector norms

Due: 1/16/25, 11:59 PM

Instructor: Jonathan Lindbloom

Problem 1. Part (a): Write a detailed description of the singular value decomposition (SVD) of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$. In your description, be sure to touch on the following points: (1) When does the SVD exist?; (2) Is the SVD unique?; (3) How does the SVD reveal the four fundamental spaces $\operatorname{col}(\mathbf{A})$, $\operatorname{ker}(\mathbf{A}), \operatorname{col}(\mathbf{A}^T), \operatorname{ker}(\mathbf{A}^T)$, and how does it reveal the column rank of \mathbf{A} ?; and (4) one other property of the SVD that you find interesting.

Part (b): Present (on a chalkboard, or via a notetaking app on Zoom) your description of the SVD to at least one other student in Math 56; list who you presented to and anyone who you listened to. Feel free to revise your description of the SVD with any feedback from your peer(s).

Problem 2. Part (a): Let $\mathbf{A} \in \mathbb{R}^{n \times n}$, and let $\mathbf{Q} \in \mathbb{R}^{n \times n}$ be an arbitrary orthogonal matrix. Show that the similarity transformation $\mathbf{Q}\mathbf{A}\mathbf{Q}^T$ has the same eigenvalues of \mathbf{A} , i.e., the eigenvalues are not disturbed. Part (b): Let $\mathbf{A} \in \mathbb{R}^{m \times n}$, and let $\mathbf{Q}_L \in \mathbb{R}^{m \times m}$ and $\mathbf{Q}_R \in \mathbb{R}^{n \times n}$ be arbitrary orthogonal matrices. Show that $\mathbf{Q}_L \mathbf{A} \mathbf{Q}_R$ has the same singular values of \mathbf{A} , i.e., left or right multiplication by orthogonal matrices does not disturb the singular values.

Problem 3. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{B} \in \mathbb{R}^{n \times n}$, $\mathbf{x} \in \mathbb{R}^n$. In "Big O" notation, how many flops are required to compute the matrix-vector product $\mathbf{A}\mathbf{x}$ using the standard algorithm? What about the matrix-matrix product $\mathbf{A}\mathbf{B}$? Provide reasoning for your answer.

Problem 4. Let $\mathbf{u}, \mathbf{x} \in \mathbb{R}^n$. Part (a): What is the rank of $\mathbf{U} = \mathbf{u}\mathbf{u}^T$? What are its eigenvalues? Part (b): In "Big O" notation, how many flops are required to compute $\mathbf{z} = \mathbf{U}\mathbf{x}$ when computed as $\mathbf{z} = (\mathbf{u}\mathbf{u}^T)\mathbf{x}$? What about when computed as $\mathbf{z} = \mathbf{u}(\mathbf{u}^T\mathbf{z})$?

Problem 5. Let $\mathbf{U}, \mathbf{V} \in \mathbb{R}^{n \times k}$ with rank $(\mathbf{U}) = \text{rank}(\mathbf{V}) = k$. What is rank $(\mathbf{U}\mathbf{V}^T)$?

Problem 6. Show that $\|\mathbf{x}\|_1 \leq n \|\mathbf{x}\|_{\infty}$ for any $\mathbf{x} \in \mathbb{R}^n$.

Problem 7. Let $\mathbf{C} \in \mathbb{R}^{n \times n}$ be a symmetric positive definite (SPD) matrix and let $\langle \mathbf{u}, \mathbf{v} \rangle_{\mathbf{C}} := \mathbf{u}^T \mathbf{C} \mathbf{v}$ be the **C**-weighted inner product for vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$. Verify that $\| \cdot \|_{\mathbf{C}} = \sqrt{\langle \cdot, \cdot \rangle_{\mathbf{C}}}$ satisfies all properties of a norm on \mathbb{R}^n .

Problem 8. Let $\mathbf{D} = \operatorname{diag}(d_1, \dots, d_n)$ where $d_i > 0$ for each i, and let $\|\cdot\|_{\mathbf{D}} = \sqrt{\langle \cdot, \cdot \rangle_{\mathbf{D}}}$. Show that $\|\cdot\|_{\mathbf{D}}$ is equivalent to $\|\cdot\|_2$, i.e., find constants C_1 and C_2 such that

$$C_1 \|\mathbf{x}\|_2 \le \|\mathbf{x}\|_{\mathbf{D}} \le C_2 \|\mathbf{x}\|_2$$
 (1)

for all $\mathbf{x} \in \mathbb{R}^n$.

Problem 9. Let \mathbb{C} and $\|\cdot\|_{\mathbb{C}}$ be as in Problem 7. Show that $\|\cdot\|_{\mathbb{C}}$ is equivalent to $\|\cdot\|_2$, i.e., find constants C_1 and C_2 such that

$$C_1 \|\mathbf{x}\|_2 \le \|\mathbf{x}\|_{\mathbf{C}} \le C_2 \|\mathbf{x}\|_2$$
 (2)

for all $\mathbf{x} \in \mathbb{R}^n$.

Problem G1. Let \mathbf{C} and $\|\cdot\|_{\mathbf{C}}$ be as in Problem 7, but now let \mathbf{C} be only symmetric positive semidefinite with $\mathrm{rank}(\mathbf{C}) = r < n$. Show that $\|\cdot\|_{\mathbf{C}}$ as previously defined is no longer a norm on \mathbb{R}^n , but does satisfy the definition of a norm on the subspace $\mathrm{col}(\mathbf{C}) \subset \mathbb{R}^n$.

Problem G2. Prove at least one part of the Courant-Fischer theorem.

