Math 56, Winter 2025	Dartmouth College
${ m PS}$ #2 — Matrix norms and conditioning	
Due: 1/05/05 11:50 PM Instructor	Ionathan Lindhloom

Problem 1. Part (a): Using the definition of matrix-matrix multiplication, show that

$$tr(\mathbf{AB}) = tr(\mathbf{BA}) \tag{1}$$

for square matrices $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$.

Part (b): Explain why this property implies that for any set of square matrices $\{\mathbf{A}_i\}_{i=1}^n$ the trace satisfies the cyclic property

$$tr(\mathbf{A}_{\sigma(1)}\cdots\mathbf{A}_{\sigma(n)}) = tr(\mathbf{A}_{1}\cdots\mathbf{A}_{n})$$
(2)

where $\sigma : \{1, \ldots, n\} \to \{1, \ldots, n\}$ is cyclic permutation of the indices.

Problem 2. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$. Use the definition of matrix-matrix multiplication to show that

$$\|\mathbf{A}\|_F^2 = \operatorname{tr}(\mathbf{A}^T \mathbf{A}). \tag{3}$$

Problem 3. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$. Show that the Frobenius norm satisfies

$$\|\mathbf{A}\|_F = \sqrt{\sum_{i=1}^r \sigma_i^2} \tag{4}$$

where $\{\sigma_i\}$ are the singular values of **A** and $r = \operatorname{rank}(\mathbf{A})$. *Hint: use the results of Problem 1 and Problem 2.*

Problem 4. Show that the Frobenius and induced matrix 2-norms satisfy

$$\|\mathbf{A}\|_{2} \leq \|\mathbf{A}\|_{F} \leq \sqrt{\operatorname{rank}(\mathbf{A})} \, \|\mathbf{A}\|_{2} \tag{5}$$

for all $\mathbf{A} \in \mathbb{R}^{m \times n}$, i.e., these norms are equivalent. *Bonus:* For what class of matrices does $\|\mathbf{A}\|_2 = \|\mathbf{A}\|_F$?

Problem 5. Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be an invertible matrix. Let $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$ be its SVD with the diagonal entries of $\mathbf{\Sigma} = \text{diag}(\sigma_1, \dots, \sigma_n)$ given in descending order. The Eckart-Young theorem states that

$$\underset{\mathbf{Z}\in\mathbb{R}^{n\times n}:\operatorname{rank}(\mathbf{Z})=k}{\operatorname{arg\,min}} \|\mathbf{A}-\mathbf{Z}\|_{2} = \mathbf{A}_{k},\tag{6}$$

where $\mathbf{A}_k = \sum_{i=1}^k \sigma_i \mathbf{u}_i \mathbf{v}_i^T$ is the truncated SVD of rank k.

Part (a): Use this theorem to show that

$$\min_{\mathbf{X}\in\mathbb{R}^{n\times n}:\mathbf{X}\text{ singular}} \|\mathbf{A}-\mathbf{X}\|_2 = \sigma_n,\tag{7}$$

i.e., that the smallest singular value measures the absolute distance from A to the nearest singular matrix.

Part (b): Use this theorem to show that

$$\min_{\mathbf{X}\in\mathbb{R}^{n\times n}:\mathbf{X} \text{ singular}} \frac{\|\mathbf{A}-\mathbf{X}\|_2}{\|\mathbf{A}\|_2} = \frac{1}{\kappa(\mathbf{A})},\tag{8}$$

i.e., that the reciprocal of the condition number measures the relative distance from \mathbf{A} to the nearest singular matrix.

Problem G1. Prove the Eckart-Young theorem.

Problem G2. Prove Lemma 3.1 of Accuracy and Stability of Numerical Algorithms by Nicholas Higham (2002). Then, use this result to prove backward stability of the inner product operation.

