
Math 56, Winter 2025 Dartmouth College

PS #3 — Gaussian elimination and Cholesky factorization

Due: 2/5/25, 11:59 PM Instructor: Jonathan Lindbloom

For this problem set, you must complete at least 8 problems, including the required problems (*).

Problem 1. Let

N =


1

1
1
l43 1
l53 1

 , M =


1

1
1

−l43 1
−l53 1

 , (1)

where l43 and l53 are arbitrary real numbers. Show that NM = I and MN = I, i.e., that M is the inverse of N.

Problem 2. Let

M−1
1 =


1
l21 1
l31 1
l41 1
l51 1

 , M−1
2 =


1

1
l32 1
l42 1
l52 1

 , M−1
3 =


1

1
1
l43 1
l53 1

 , M−1
4 =


1

1
1

1
l54 1


(2)

where the lij are arbitrary real numbers. By successively computing M−1
1 M−1

2 , (M−1
1 M−1

2 )M−1
3 , and

((M−1
1 M−1

2 )M−1
3 )M−1

4 , show that

M−1
1 M−1

2 M−1
3 M−1

4 =


1
l21 1
l31 l32 1
l41 l42 l43 1
l51 l52 l53 l54 1

 . (3)

Problem 3*. GEPP applied to an invertible matrix A ∈ R3×3 produces a factorization

M2P2M1P1A = U (4)

where L is unit lower triangular, U is upper triangular, and P1 and P2 are permutation matrices. Recall that M1

and M2 are elementary lower triangular matrices of the form

M1 =

 1 0 0
−m21 1 0
−m31 0 1

 , M2 =

1 0 0
0 1 0
0 −m32 1

 , (5)

and that P1 may permute any rows while P2 may only permute the second and third rows.
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Part (a): Explain why the factorization can be written as

M̃2M̃1PA = U (6)

where M̃2 = M2, M̃1 = P2M1P2, P = P2P1.
Part (b): Note that there are two possibilities for the permutation matrix P2. For both cases, explicitly

compute the matrix M̃1.
Part (c): For both possibilities of P2, find the unit lower triangular matrix L such that PA = LU.

Problem 4*. In this exercise, you will analyze the computational cost to obtain the LU decomposition via
GE. You may assume that no pivoting is required. Note that the elementary lower triangular matrices can be
written as Mk = In + meTk where m = [0, . . . , 0,mk+1,k, . . . ,mn,k]

T ∈ Rn and ek ∈ Rn is the kth vector in the
standard basis.

Part (a): In the kth step of GE, the multipliers in the matrix Mk must be computed. How many flops does
computing these multipliers cost, in terms of k?

Part (b): How many flops does it take to compute a matrix-vector product Mkx in terms of k, when computed
as efficiently as possible? Note that additions or multiplications by zeros or ones that are determined in advance
by the structure of Mk can be ignored.

Part (c): In the kth step of GE, the elementary matrix Mk must be applied to Ak−1 ∈ Rn×n. Note that the
subdiagonal entries in the first k− 1 columns of Ak−1 have already been zeroed out, so we must only consider the
matrix-matrix multiplication involving the matrix formed by the last n− k+1 columns of Ak−1. How many flops
does it take to compute the matrix-matrix product MkAk−1 = Ak, in terms of k, when computed as efficiently
as possible? Again, note that additions or multiplications by zeros or ones that are determined in advance by the
structure of Mk can be ignored.

Part (d): Use these results to show that GE to produce the factorization A = LU costs O(n3) flops.

Problem 5* (Datta 5.13). Apply GEPP and GECP (by hand, although you may use code to check your
work) to both of the following matrices:

(i) A =

 1 0 1
−1 1 1
−1 −1 1

 , (ii) A =

100 99 98
98 55 11
0 1 1

 (7)

Show all of your work. For GEPP, state all matrices in the intermediate factorization

M2P2M1P1A = U (8)

as well as the final factorization PA = LU. For GECP, state all matrices in the intermediate factorization

M2P2M1P1AQ1Q2 = U (9)

as well as the final factorization PAQ = LU. Compute the growth factor in all cases.

Problem 6. Explain how the linear system Ax = b may be solved using the PAQ = LU decomposition
produced by GECP.
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Problem 7. Explain how log(| det(A)|) can be computed using each of the factorizations A = LU (as in GE),
PA = LU (as in GEPP), and PAQ = LU (as in GECP).

Problem 8 (AG 5.23). Let b+ δb be a perturbation of a vector b (b ̸= 0), and let x and δx be such that
Ax = b and A(x+ δx) = b+ δb, where A is a given nonsingular matrix. Show that

∥δx∥2
∥x∥2

≤ κ(A)
∥δb∥2
∥b∥2

(10)

Problem 9. This problem builds on Problem 4. A matrix T ∈ Rn×n is said to be tridiagonal if tij = 0
whenever |i − j| > 1 for i, j = 1, . . . , n. A matrix H ∈ Rn×n is said to be upper Hessenberg if hij = 0 whenever
i > j + 1.

Part (a): Give a detailed description of how the factorization H = LU (assuming that no pivoting is required)
can be obtained in only O(n2) flops when H is upper hessenberg.

Part (b): Give a detailed description of how the factorization T = LU (assuming that no pivoting is required)
can be obtained in only O(n) flops when T is triangular.

Problem 10. Compute (by hand, although you may use code to check your work) the Cholesky decomposition
of the matrix

A =

1 1 1
1 5 5
1 5 14

 . (11)

Show all of your work.

Problem 11. Let A = LL⊤ be the Cholesky factorization of a symmetric positive definite matrix A ∈ Rn×n.
Part (a): Explain why the diagonal of A can contain no negative (or zero) entries.
Part (b): Show that

l2ij ≤ aii, i, j = 1, . . . , n, (12)

i.e., the squares of the entries in any row of L are bounded above by the corresponding diagonal entry in A.
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