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The lengthy and meticulous construction of the Drumbone, made up of large piece of drainage PVC pipes and rivets, helped us investigate how the instrument worked. The concept of the Drumbone closely correlated with the classical model of the trombone. Different sounds would be produced based upon changing the length of the instrument by the sliding of tubes.  Although the sliding aspect of the Drumbone related to classical theories of the trombone, the Drumbone is considered a modern and innovative instrument because it is a percussion instrument. Based upon whether you struck the instrument at the reed or various parts of the instrument, the Drumbone would produce different pitches and sounds.  Utilizing Audacity to view spectrograms, we were able to differentiate how the Drumbone created different frequencies at different lengths. By monitoring the periodic signals and finding the fundamental frequencies, we were able to discover how the length of the instrument compared to the production of sound. Also different variables factored into the scheme of sounds created by the Drumbone such as end corrections and decay time. Through a broad study of these topics and numerous trials of making spectrograms, we were able to create a functional instrument that helped us further understand the numerous concepts we learned and apply them in practice.

We analyzed one of the sub-instruments of the Drumbone using the Praat program.  This part of the Drumbone consisted of the reed segment, the PVC elbows which attach to the smaller diameter PVC pipe, and the larger diameter PVC pipe which is attached to another elbow and slides over the smaller pipe.  According to the formula for the frequency of an open-open pipe f = C / 2L, the frequency produced by a pipe should decrease as the length of the pipe increases.  We measured the frequency when the part of the Drumbone was at three different lengths: the shortest it could be (highest possible frequency for the part), the longest it could be (lowest possible frequency for the part), and another point approximately in the middle.  It was difficult to tell the exact fundamental frequency by examining the spectrogram and spectrums, so we looked at some of the upper partials which were easier to distinguish.  For the longest length, the partials were 180 Hz, 249 Hz, 302 Hz, and 362 Hz (see spectrograms at end of paper).  These are all approximately multiples of 61 Hz, so this is the fundamental frequency of the pipe at this length.  For the middle length, we found that four of the most apparent partials were 137 Hz, 202 Hz, 276 Hz, and 339 Hz.  These are close to the appropriate multiples for a fundamental frequency of 68.5 Hz.  For the shortest length, it was easier to identify the fundamental frequency as there was a noticeably dark line at 80 Hz, and the upper partials of 157 Hz, 246 Hz, 316 Hz, and 471 Hz roughly correspond to this fundamental frequency.  Based on the data we gathered, the instrument held true to the prediction that the greater the length of the pipe, the lower the frequency.

Using the formula n=12ln(f1/f2)/ln(2), we can find how many semitones away from a certain note each of these frequencies are.  Since we know that A4 has a frequency of 440 Hz and that frequency doubles with an increase of one octave, we know that A1 has a frequency of 55 Hz.  This is relatively close to the frequencies we found, so we used this note as a base.  We found that these 3 frequencies corresponded to approximately a B1, a C2#, and an E2.  Given that we found the lowest and highest frequencies, our instrument had a range from B1 to E2.


Next, we wanted to determine if our pipe produced the frequency it should produce given the aforementioned formula for the frequency of a pipe.  We measured the shortest possible length of the pipe (where it would produce the highest frequency) by using a tape measure for the straight pipes.  For the curved parts (the PVC elbows), we used a shoelace running along the outside of the pipe to measure the shortest, inner length and the longest, outer length of the pipe.  We took the average of these two measurements to approximate the midline distance, i.e. the distance in the exact middle of the pipe.  The total length of pipe was 210.5 cm, or 2.105 m.  We used 340 m/s as an approximation for the speed of sounds as we had done in class.  Thus, we had f=340/(2*2.105) and found this frequency to be 80.8 Hz.  This does not include end correction but is very close to our measured frequency of 80 Hz.  Given that 80 Hz was the true frequency it produced, we could find the end correction by using 80Hz=340/[2*(2.105 + 2e), 2e because there are end corrections at both ends of an open-open pipe.  This would give us an end correction of .01m, or 1 cm.  According to the Michigan Tech University Physics Department’s website, the end correction should be approximately 0.6 * (inside radius of tube).  Our tubes the sound traveled in were 4 inches wide in diameter, thus having a radius of 5.08cm, so our end correction should have been 3.05cm.  We were off by a significant margin, but this could easily be explained by measurement error or the fact that there is space between the small and large pipe.  It was difficult to measure the length of the tube using string to begin with, and the string may have been more taut while measuring the pipe or seeing how long the string was on the tape measure.

After this, we measured the decay time of the high frequency sound produced by the shortest pipe length using the formula y(t) = A*e^(-t/τ)*sin(2πft), where A is amplitude, t is time, and τ is decay time.  In order to find decay time, it is easiest to examine a spectrum and find the point where t= τ.  At this point, the current amplitude will be e^(-1)=.37 of its initial value.  So, we simply found the amplitude and time at a certain point, and then the time for .37*(this amplitude) and subtracted the two times.  For this frequency, the decay time was 10.0191s–9.9872s= .0319 seconds.  This seems rather short for decay time but makes sense considering the sound was produced by a quick, percussive strike.  To find the number of oscillations before the wave decayed, we solved for the Q factor using the formula Q=πf τ.  We found that the wave oscillated 8 times before it decayed.

Finally, we determined the excitation amplitudes of several different modes of the pipe.  The reed was hit approximately 15 cm down the length of the pipe.  To find the excitation amplitude of any mode, use αn = (1/n)*sin(nπx/L).  We use 1/n rather than 1/(n^2) because we hit rather than pluck, and we plug in x=.15m and L=2.105cm.  So, for the first mode, its excitation amplitude is .222.  For the second mode, its excitation amplitude was .2165.  The third’s was .2074, and the fourth’s was .1951.  It gets interesting though when we look at the mode that has a node at the place we hit the pipe.  Hitting 15 cm down a 210.5 cm pipe is hitting at .0713*the length of the pipe which is approximately 1/14 the length of the pipe. If you hit at a node, the mode should not be excited; so, for our instrument, the fourteenth mode should not be excited.  We find that this is true.  The fourteenth mode’s excitation amplitude is .000533, very close to 0.  If we look at the modes above and below this, we find that the thirteenth mode’s excitation amplitude is .0176 and the fifteenth’s is .0143.  These are close to each other just as the first four modes we found earlier are.  This is evidence that it is only the fourteenth mode that has an extremely low excitation amplitude.  This will hold true for the every multiple of 14.
The Drumbone is an instrument which combines a percussive strike with pipe elements.  We began by playing our instrument and simply observing the sounds we heard.  When we lengthened our pipes, the pitch became lower and vice versa.  We also experimented to see how the instrument would sound if we covered up one of the open ends.  When we covered one opening of the pipe completely, the frequency dropped.  When we covered it partially, it still was lower than if it were open but not quite as much as when it was covered completely.  This fits with what we learned in class: natural frequency drops if a pipe is constricted at a node.  We progressed into more intricate mathematical and musical concepts including decay time, excitation amplitudes, and frequency.  All of our research on the instrument and calculations about it confirm all that we have learned in class on these topics.  The Drumbone is a truly innovative instrument which uses the fundamentals of the mathematical properties of music to vary its pitch.
Low frequency spectrogram: 
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Medium frequency spectrogram
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High frequency spectrogram:
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