Math 63, Winter 2012

The Hilbert curve (1891).

The following picture is taken from the wikipedia entry for Space-filling curve.

This picture consists of six separate graphs, each depicting a curve in the plane. In fact, the six curves depicted here represent the first six functions in a sequence $f_{1}, f_{2}, f_{3}, \ldots$ with $f_{n}:[0,1] \rightarrow \mathbb{R}^{2}$. Each picture shows, in red, a subset of the plane \mathbb{R}^{2} that is the image $f_{n}([0,1])$ for one of these functions. The particular sequence of functions depicted here was constructed by the mathematician David Hilbert in 1891, inspired by a similar idea of Guiseppe Peano from the year before.

Let's first look at the picture in the upper left hand corner. It depicts the image of a function $f_{1}:[0,1] \rightarrow \mathbb{R}^{2}$. To describe the nature of the function f_{1}, we divide the interval $[0,1]$ into four equal (but not disjoint) parts

$$
[0,1]=\left[0, \frac{1}{4}\right] \cup\left[\frac{1}{4}, \frac{2}{4}\right] \cup\left[\frac{2}{4}, \frac{3}{4}\right] \cup\left[\frac{3}{4}, 1\right]=I_{1} \cup I_{2} \cup I_{3} \cup I_{4} .
$$

We also divide the square $[0,1] \times[0,1] \subset \mathbb{R}^{2}$ into 4 equal parts:

$$
\begin{aligned}
{[0,1] \times[0,1] } & =\left[0, \frac{1}{2}\right] \times\left[0, \frac{1}{2}\right] \cup\left[0, \frac{1}{2}\right] \times\left[\frac{1}{2}, 1\right] \cup\left[\frac{1}{2}, 1\right] \times\left[\frac{1}{2}, 1\right] \cup\left[\frac{1}{2}, 1\right] \times\left[0, \frac{1}{2}\right] \\
& =S_{1} \cup S_{2} \cup S_{3} \cup S_{4}
\end{aligned}
$$

Then the crucial property of the function f_{1} is that it maps each interval I_{p} to the square S_{p},

$$
f_{1}\left(I_{p}\right) \subset S_{p} \text { for } p=1,2,3,4
$$

(Make sure you see how these facts relate to the image in the first picture.)
Moreover, if you look at all the five pictures of $f_{2}, f_{3}, f_{4}, f_{5}, f_{6}$ that come after f_{1}, you may see that they have the same property:

$$
f_{n}\left(I_{p}\right) \subset S_{p}, \text { for } p=1,2,3,4, \text { and for every } n \geq 1 .
$$

The curves f_{n} become more and more convoluted, but remain subordinate to this rule imposed by the division of the interval $[0,1]$ and the square $[0,1] \times[0,1]$ into four equal parts.

In general, for every value of $n=1,2,3, \ldots$, there exists a subdivision of the interval $[0,1]$ into 4^{n} closed intervals of size $1 / 4^{n}$,

$$
[0,1]=\bigcup_{p=1}^{4^{n}} I_{p}^{n}
$$

The explicit formula for the interval I_{p}^{n} is

$$
I_{p}^{n}=\left[\frac{p-1}{4^{n}}, \frac{p}{4^{n}}\right] .
$$

Likewise, the square $[0,1] \times[0,1] \subset \mathbb{R}^{2}$ can be sub-divided into 4^{n} smaller squares with sides of length $1 / 2^{n}$. Let us assume that we label this set of squares somehow as $S_{1}^{n}, S_{2}^{n}, \ldots, S_{4^{n}}^{n}$, so that

$$
[0,1] \times[0,1]=\bigcup_{p=1}^{4^{n}} S_{p}^{n}
$$

where each S_{p}^{n} is of the form

$$
S_{p}^{n}=\left[\frac{q-1}{2^{n}}, \frac{q}{2^{n}}\right] \times\left[\frac{r-1}{2^{n}}, \frac{r}{2^{n}}\right]
$$

for some choice of integers q, r between 1 and 2^{n}.
Hilbert proved (and you may take this for granted) that it is possible to label the squares S_{p}^{n} in such a way that there exists a continuous function $f_{n}:[0,1] \rightarrow \mathbb{R}^{2}$ which satisfies

$$
f_{n}\left(I_{p}^{n}\right) \subset S_{p}^{n} \text { for } p=1,2, \ldots, 4^{n}
$$

Moreover, all of the later functions f_{m} in the sequence (i.e., $m>n$) also respect this particular subdivision into 4^{n} parts,

$$
f_{m}\left(I_{p}^{n}\right) \subset S_{p}^{n}, \text { for all } m \geq n, p=1,2, \ldots, 4^{n}
$$

Before you try to solve the following problems, identify the squares S_{p}^{n} in the six pictures and try to understand how the properties of f_{n} mentioned here are reflected in the graphs.

1. Explain how the set of continuous curves in \mathbb{R}^{2} can be made into a metric space (\mathcal{F}, D)
2. Prove that the sequence of curves $f_{1}, f_{2}, f_{3}, \ldots$ is a Cauchy sequence in (\mathcal{F}, D).
3. Why does this imply that $\lim _{n \rightarrow \infty} f_{n}=f$ exists? Why does this imply that the limit is a continuous curve $f:[0,1] \rightarrow \mathbb{R}^{2}$?
4. Prove that every point $(x, y) \in[0,1] \times[0,1]$ occurs in the image $f([0,1])$ of the limit curve. (The limit f is called the Hilbert curve and it is an example of a space-filling curve.)
