
Math 63, Winter 2012

The Hilbert curve (1891).
The following picture is taken from the wikipedia entry for Space-filling curve.

This picture consists of six separate graphs, each depicting a curve in the plane. In fact, the six
curves depicted here represent the first six functions in a sequence f1, f2, f3, . . . with fn : [0, 1]→ R2.
Each picture shows, in red, a subset of the plane R2 that is the image fn([0, 1]) for one of these
functions. The particular sequence of functions depicted here was constructed by the mathematician
David Hilbert in 1891, inspired by a similar idea of Guiseppe Peano from the year before.

Let’s first look at the picture in the upper left hand corner. It depicts the image of a function
f1 : [0, 1]→ R2. To describe the nature of the function f1, we divide the interval [0, 1] into four equal
(but not disjoint) parts
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We also divide the square [0, 1]× [0, 1] ⊂ R2 into 4 equal parts:
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= S1 ∪ S2 ∪ S3 ∪ S4.

Then the crucial property of the function f1 is that it maps each interval Ip to the square Sp,

f1(Ip) ⊂ Sp for p = 1, 2, 3, 4.

(Make sure you see how these facts relate to the image in the first picture.)
Moreover, if you look at all the five pictures of f2, f3, f4, f5, f6 that come after f1, you may see

that they have the same property:

fn(Ip) ⊂ Sp , for p = 1, 2, 3, 4, and for every n ≥ 1.



The curves fn become more and more convoluted, but remain subordinate to this rule imposed by
the division of the interval [0, 1] and the square [0, 1]× [0, 1] into four equal parts.

In general, for every value of n = 1, 2, 3, . . . , there exists a subdivision of the interval [0, 1] into
4n closed intervals of size 1/4n,

[0, 1] =
4n⋃
p=1

Inp .

The explicit formula for the interval Inp is
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Likewise, the square [0, 1]× [0, 1] ⊂ R2 can be sub-divided into 4n smaller squares with sides of length
1/2n. Let us assume that we label this set of squares somehow as Sn
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for some choice of integers q, r between 1 and 2n.
Hilbert proved (and you may take this for granted) that it is possible to label the squares Sn

p in
such a way that there exists a continuous function fn : [0, 1]→ R2 which satisfies

fn(Inp ) ⊂ Sn
p for p = 1, 2, . . . , 4n.

Moreover, all of the later functions fm in the sequence (i.e., m > n) also respect this particular
subdivision into 4n parts,

fm(Inp ) ⊂ Sn
p , for all m ≥ n, p = 1, 2, . . . , 4n.

Before you try to solve the following problems, identify the squares Sn
p in the six pictures and try to

understand how the properties of fn mentioned here are reflected in the graphs.

1. Explain how the set of continuous curves in R2 can be made into a metric space (F , D)

2. Prove that the sequence of curves f1, f2, f3, . . . is a Cauchy sequence in (F , D).

3. Why does this imply that limn→∞ fn = f exists? Why does this imply that the limit is a
continuous curve f : [0, 1]→ R2?

4. Prove that every point (x, y) ∈ [0, 1] × [0, 1] occurs in the image f([0, 1]) of the limit curve.
(The limit f is called the Hilbert curve and it is an example of a space-filling curve.)


