Math 63
Real Analysis (honors)
Winter 2018

General Info | Day-to-day

Syllabus and homework assignments

 wk date reading topic homework 1 1/3 Ch I Introduction Ch I: 3b, 4b, 5a, 7d, 10a 1/5 Ch II.1-2 Ordered fields Ch II: 2a, 3, 6 2 1/8 Ch II.3-4 Least upper bound Ch II: 11, 13 1/10 Ch III.1 Metric spaces Ch III: 1ab 1/12 Ch III.2 Open sets Ch III: 3, 4, 5 3 1/15 Ch III.2 (continued) - 1/17 Ch III.3 Convergence Ch III: 8, 10, 11, 18 1/19 Ch III.4 Complete spaces Ch III: 24 4 1/22 Ch III.5 Compact sets Ch III: 35, 36, 37 1/24 Ch III.5 Heine-Borel - 1/26 Ch III.6 Connected sets - 5 1/29 Ch IV.1 Continuous functions Ch IV: 1ad, 3, 4, 5, 9a 1/31 Ch IV.2 Functions and limits - 2/2 Ch IV.3 Rational functions Ch IV: 10a 6 2/5 Ch IV.4/5 Functions on compact and connected sets - 2/7 Ch IV.6 Sequences of functions Ch IV: 41 2/9 - The Hilbert curve - 7 2/12 Ch V.1,2 Derivatives - 2/14 Ch V.3 Mean Value Theorem Ch V: 8, 9a, 12 2/16 Ch V.4 Taylor's Theorem Ch V: 14 8 2/19 Ch VI.1 Riemann intergral Ch VI: 1, 2 2/21 Ch IV.2, 3 Properties of integral Ch VI: 11, 20 2/23 - Integrable functions Ch VI: 3 (prove it is 0) 9 2/26 Ch VI.4, 5 Fundamental theorem - 2/28 Ch VII.1 Interchange of limit operations - 2/23 Ch VII.2,3 Power series -