
Math 63, Winter 2019

The Hilbert curve (1891).
The following picture is taken from the wikipedia entry for Space-filling curve.

This picture consists of six separate graphs, each depicting a curve in the plane. The curves depicted
here represent the first six functions in a sequence f1, f2, f3, . . . with fn : [0, 1] → R2. Each picture
shows, in red, a subset of the plane R2 that is the image {fn(t) | t ∈ [0, 1]} for one of these functions.
The particular sequence of functions depicted here was constructed by the mathematician David
Hilbert in 1891, inspired by a similar idea of Guiseppe Peano from the year before.

Consider the picture in the upper left hand corner. It depicts the image of a function f1 : [0, 1]→
R2. To describe the function f1, we divide the interval [0, 1] into four equal (but not disjoint) parts
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We also divide the square [0, 1]× [0, 1] ⊂ R2 into 4 equal parts:
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= S1 ∪ S2 ∪ S3 ∪ S4.

Then the crucial property of the function f1 is that it maps each interval Ip to the square Sp,

f1(Ip) ⊂ Sp for p = 1, 2, 3, 4.

Moreover, if you look at all the five pictures of f2, f3, f4, f5, f6 that come after f1, you may see that
they have the same property:

fn(Ip) ⊂ Sp , for p = 1, 2, 3, 4, and for every n ≥ 1.



The curves fn become more and more convoluted, but remain subordinate to this rule imposed by
the division of the interval [0, 1] and the square [0, 1]× [0, 1] into four equal parts.

In general, for every value of n = 1, 2, 3, . . . , there exists a subdivision of the interval [0, 1] into
4n closed intervals of size 1/4n,
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The explicit formula for the interval Inp is
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Likewise, the square [0, 1]× [0, 1] ⊂ R2 can be sub-divided into 4n smaller squares with sides of length
1/2n. Let us assume that we label this set of squares somehow as Sn
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for some choice of integers q, r between 1 and 2n.
Hilbert proved (and you may take this for granted) that it is possible to label the squares Sn

p in
such a way that there exists a continuous function fn : [0, 1]→ R2 which satisfies

fn(Inp ) ⊂ Sn
p for p = 1, 2, . . . , 4n.

Moreover, all of the functions fm in the sequence with m > n also respect this particular subdivision
into 4n parts,

fm(Inp ) ⊂ Sn
p , for all m ≥ n, p = 1, 2, . . . , 4n.

Before you try to solve the following problems, identify the squares Sn
p in the six pictures and try to

understand how the properties of fn mentioned here are reflected in the graphs.
Let F be the set of continuous functions f : [0, 1]→ R2, and let D : F × F → R be the metric

D(f, g) = max
t∈[0,1]

d(f(t), g(t))

where d is the Euclidean distance in R2.

1. Prove that f1, f2, f3, . . . is a Cauchy sequence in F .

2. Why does this imply that limn→∞ fn = f exists in F? Why does this imply that f : [0, 1]→ R2

is continuous?

3. Prove that for every point (x, y) ∈ [0, 1]× [0, 1] there exists t ∈ [0, 1] such that f(t) = (x, y).

Remark. The limit function f is called the Hilbert curve and it is an example of a space-filling curve.


