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Getting Started

1 We should be recording.

2 Our First Homework assignment is due Friday at 3pm via
gradescope.

3 Time for some questions!
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Last Time

Definition

We say that a field F is ordered if there is a subset P ⊂ F \ {0}
such that

1 F is the disjoint union of P, {0}, and −P.

2 If a, b ∈ P, then a + b ∈ P and ab ∈ P.

We say that x > 0 if x ∈ P, and that x < y if y − x ∈ P. We call
the pair (F,P), or sometimes (F , <) an ordered field.

Example

Let P = { a
b ∈ Q : a, b ∈ N }. Then (Q,P) is an ordered field that

we’ve held dear to our hearts since grade school.

Dana P. Williams Math 63: Winter 2021 Lecture 3



Not a Rational World

Remark

We know, or at least we’ve been told, that rational numbers do
not suffice for the sort of “real world” applications we love.
Assuming, as we’ll show later, that

√
2 is not rational, the distance

from (1, 0) to (0, 1) in the plane is not rational. The area of a
circle of radius 1 is not rational. The function f (x) = x2 − 2 does
not cross the x-axis in a rational world.

Since back in the day, we have been told that the rational numbers
are actually a subfield of a field, R, called the field of real numbers
that contains all the numbers we want such as

√
2, π, e, as things

we haven’t even thought of yet. So what makes R special?
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Least Upper Bounds

Definition

Let S ⊂ F be a subset of an ordered field. We say that b is an
upper bound for S if s ≤ b for all s ∈ S . We say that u is a least
upper bound for S if u is an upper bound for S such that if t is
any other upper bound for S then u ≤ t. If u exists, then we write
u = l. u. b.(S).

Example

Let S = { 1− 1
n : n ∈ N }. Then 1 = l. u. b.(S). Note that 1 /∈ S .

Example

Let F = Q and S = { r ∈ Q : r2 < 2 }. Then b = 2 is an upper
bound for S in Q. But assuming

√
2 is irrational and that we can

find rational numbers as close as we please to
√

2, then S has no
least upper bound in Q. Of course, in R, l. u. b.(S) =

√
2.
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Complete Ordered Fields

Definition

An ordered field F is called complete if every nonempty set that is
bounded about has a least upper bound.

Definition

We assume that there is a complete ordered field, R, called the
real numbers, containing Q as a subfield.

Remark (Aside)

Actually, we don’t have to assume Q ⊂ R. We call a subset A ⊂ R
inductive if 1 ∈ A and n ∈ A implies n + 1 ∈ A. Since⋂
{A : A is inductive } is inductive, there is a smallest inductive set

N in R. We let Z = −N ∪ {0} ∪N and define Q as before.
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Some Real Properties

Lemma

If x ∈ R, then there is a n ∈ N such that n > x.

Proof.

Suppose that result is false. Then there is an upper bound x ∈ F
for the set N. Let a = l. u. b.(N). Then a− 1 is not an upper
bound for N. Why? Thus there is a n ∈ N such that a− 1 < n.
But then a < n + 1. Since n + 1 ∈ N, a is not an upper bound for
N. This is a contradiction.

Lemma

Suppose ε > 0 in R. Then there is a n ∈ N such that 1
n < ε.

Proof.

Use the first lemma, to find n ∈ N such that 1
ε < n. Since

0 < a < b implies 1
b <

1
a (HW), we have 1

n < ε.
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Getting There

Lemma

If x ∈ R then there is a n ∈ Z such that n ≤ x < n + 1.

Proof.

Let N ∈ N be such that |x | ≤ N. Then −N ≤ x ≤ N. Since
F = {−N,−N + 1, . . . ,N } is finite, we can let n be the smallest
n ∈ F such that n ≤ x .

Lemma

Let x ∈ R and N ∈ N. Then there is a n ∈ Z such that
n
N ≤ x < n+1

N .

Proof.

Use the previous result to find n ∈ Z such that
n ≤ Nx < n + 1.
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The Rationals are Dense

Proposition

Suppose x ∈ R and ε > 0. Then there is a r ∈ Q such that
|x − r | < ε. (Later, we will say that Q is dense in R.)

Proof.

We can find N ∈ N such that 1
N < ε. Then we can find n ∈ Z such

that n
N ≤ x < n+1

N . Then 0 ≤ x − n
N < 1

N < ε. Hence
|x − n

N | < ε.
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Break Time

1 Well, that was fun.

2 Time for a break.
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Decimals

Definition

Let D = { 0, 1, 2, . . . , 0 }. If { a1, . . . , an } ⊂ D and a0 ∈ Z, then
we define

a0.a1a2 · · · an = a0 +
a1
10

+
a2

102
+ · · ·+ an

10n
. (‡)

We call (‡) a finite decimal expansion.

Lemma (Rounding Off)

Let a0.a1 · · · an be a finite decimal expansion. If 1 ≤ m < n, then

a0.a1 · · · am ≤ a0.a1 · · · an < a0.a1 · · · am +
1

10m
.

Remark

For example, 1.23 ≤ 1.2345 < 1.23 + 0.01. (Here, m = 2.)
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Proof

Proof of the Lemma.

We have

a0.a1 · · · am ≤ a0.a1 · · · am
= a0.a1 · · · am + am+110−(m+1) + · · ·+ an10−n

≤ a0.a1 · · · am + 9 · 10−(m+1) + · · ·+ 9 · 10−n

which, after adding 10−n > 0 to the right-hand side, is

≤ a0.a1 · · · am + 10−m.
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Infinite Decimals

Given a0 ∈ Z and a sequence (an) ⊂ { 0, 1, 2, · · · , 9 }, consider the
set

S = { a0.a1 · · · an : n ∈ N }.

This set is nonempty bounded aboue by a0.a1 + 0.1. Hence we can
define

a0.a1a2 · · · = l. u. b.{ a0.a1 · · · an : n ∈ N }.

We call a0.a1a2 · · · an infinite decimal expansion.

Theorem

If x ∈ R, then x = a0.a1a2 · · · for some a0 ∈ Z and sequence
(an) ⊂ { 0, 1, . . . , 9 }. We say that a0.a1a2 · · · is a decimal
expansion for x.
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Proof

Sketch of the Proof.

Given m ∈ N, there is a n ∈ Z such that n
10m ≤ x ≤ n+1

10m . Thus
a0.a1 · · · am ≤ x ≤ a0.a1 · · · am + 10−m for appropriate ak . With
more work than I want to put in here, we can see that the ak are
uniquely determined by x . Thus we can find am+1 such that

a0.a1 · · · amam+1 ≤ x ≤ a0.a1 · · · amam+1 + 10−(m+1).

Continuing inductively, we get a sequence (ak) such that

x = l. u. b.{ a0.a1 · · · am : m ∈ N } = a0.a1a2 · · · .
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Caution

Remark

Our theorem implies that every real number has an infinite decimal
expansion, but for example, 1.2499999 · · · = 1.2500000 · · · = 1.25.
But this is all that can go wrong.
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Break Time

1 Let’s take a break.
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Square Roots

Theorem

If a ∈ R and a > 0, then there is a unique y > 0 such that y2 = a.
Colloquially, every positive real number has a unique positive
square root.

Proof.

If 0 < x < y , then x2 < y2. Hence if a a positive square root, then
it is unique. Thus we just have to show existence.
Let S = { x ≥ 0 : x2 ≤ a }. Since 0 ∈ S , S is not empty. Let
b = max{ a, 1 }. Then b2 = b · b ≥ b · 1 = b ≥ a. Hence b is an
upper bound for S . Let y = l. u. b.(S). We want to show that
y2 = a.
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Proof

Proof Continued.

If b = min{ a, 1 }, then b2 = b · b ≤ b · 1 = b ≤ a. Hence b ∈ S .
Thus y > 0.
Now suppose 0 < ε < y . Then 0 < y − ε < y < y + ε and
(y − ε)2 < y2 < (y + ε)2. Since y = l. u. b.(S), there are elements
in S bigger than y − ε and y + ε /∈ S . Thus
(y − ε)2 < a < (y + ε)2. Subtracting gives

(y − ε)2 − (y + ε)2 < y2 − a < (y + ε)2 − (y − ε)2.

Therefore
|y2 − a| < (y + ε)2 − (y − ε)2 = 4yε.

But this has to hold for any ε such that 0 < ε < y . This can only
happen if |y2 − a| = 0. This is what we wanted to show.

Dana P. Williams Math 63: Winter 2021 Lecture 3



Notation

Notation

If a > 0, we let
√
a be the unique positive square root of a. Of

course −
√
a is also a square root. If b2 = a, then either b =

√
a or

b < 0. But then −b =
√
a. Hence ±

√
a are the only square roots

of a. Naturally, we let
√

0 = 0.

Dana P. Williams Math 63: Winter 2021 Lecture 3



Irrationals

Theorem

If x ∈ R and ε > 0, then there is an irrational number s such that
|s − x | < ε.

Proof.

It suffices to see that given a < b, there is an irrational number s
such that a < s < b. I claim it suffice to see that there is some
irrational number t. Then we’ve already seen that there is a
rational number r such that |r − (x − t)| < ε. But
|r − (x − t)| = |(r + t)− x | and r + t is irrational.
To show that there is an irrational number, the text gives a clever
arguement using infinite decimal expansions. We can also show
directly that

√
2 is irrational. We do this next.
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√
2

Proposition
√

2 is irrational.

Proof.

Suppose to the contrary that
√

2 = p
q with p, q ∈ N. We can

assume that p and q are not both even. Then 2q2 = p2. This
forces p to be even. Say p = 2k . Then q2 = 2k2. This forces q to
be even. This contradicts our assumptions on p and q. Hence

√
2

is irrational.
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Enough

1 That is enough for today.
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