Math 63: Winter 2021 Lecture 3 Dana P. Williams Dartmouth College Wednesday January 13, 2021 # **Getting Started** - We should be recording. - Our First Homework assignment is due Friday at 3pm via gradescope. - Time for some questions! # Last Time #### Definition We say that a field ${\bf F}$ is ordered if there is a subset $P\subset {\bf F}\setminus\{0\}$ such that - **1 F** is the disjoint union of P, $\{0\}$, and -P. - ② If $a, b \in P$, then $a + b \in P$ and $ab \in P$. We say that x > 0 if $x \in P$, and that x < y if $y - x \in P$. We call the pair (\mathbf{F}, P) , or sometimes (F, <) an ordered field. ### Example Let $P = \{ \frac{a}{b} \in \mathbf{Q} : a, b \in \mathbf{N} \}$. Then (\mathbf{Q}, P) is an ordered field that we've held dear to our hearts since grade school. ### Not a Rational World #### Remark We know, or at least we've been told, that rational numbers do not suffice for the sort of "real world" applications we love. Assuming, as we'll show later, that $\sqrt{2}$ is not rational, the distance from (1,0) to (0,1) in the plane is not rational. The area of a circle of radius 1 is not rational. The function $f(x) = x^2 - 2$ does not cross the x-axis in a rational world. Since back in the day, we have been told that the rational numbers are actually a subfield of a field, \mathbf{R} , called the field of real numbers that contains all the numbers we want such as $\sqrt{2}$, π , e, as things we haven't even thought of yet. So what makes \mathbf{R} special? # Least Upper Bounds #### Definition Let $S \subset \mathbf{F}$ be a subset of an ordered field. We say that b is an upper bound for S if $s \leq b$ for all $s \in S$. We say that u is a least upper bound for S if u is an upper bound for S such that if t is any other upper bound for S then $u \leq t$. If u exists, then we write u = 1. u. b.(S). ### Example Let $S = \{1 - \frac{1}{n} : n \in \mathbb{N}\}$. Then 1 = I. u. b.(S). Note that $1 \notin S$. ### Example Let $\mathbf{F} = \mathbf{Q}$ and $S = \{ r \in \mathbf{Q} : r^2 < 2 \}$. Then b = 2 is an upper bound for S in \mathbf{Q} . But assuming $\sqrt{2}$ is irrational and that we can find rational numbers as close as we please to $\sqrt{2}$, then S has no least upper bound in \mathbf{Q} . Of course, in \mathbf{R} , I. u. b. $(S) = \sqrt{2}$. # Complete Ordered Fields #### Definition An ordered field **F** is called **complete** if every **nonempty** set that is bounded about has a least upper bound. ### Definition We assume that there is a complete ordered field, \mathbf{R} , called the real numbers, containing \mathbf{Q} as a subfield. ## Remark (Aside) Actually, we don't have to assume $\mathbf{Q} \subset \mathbf{R}$. We call a subset $A \subset \mathbf{R}$ inductive if $1 \in A$ and $n \in A$ implies $n+1 \in A$. Since $\bigcap \{A: A \text{ is inductive}\}$ is inductive, there is a smallest inductive set \mathbf{N} in \mathbf{R} . We let $\mathbf{Z} = -\mathbf{N} \cup \{0\} \cup \mathbf{N}$ and define \mathbf{Q} as before. # Some Real Properties #### Lemma If $x \in \mathbb{R}$, then there is a $n \in \mathbb{N}$ such that n > x. ### Proof. Suppose that result is false. Then there is an upper bound $x \in F$ for the set \mathbf{N} . Let $a = \mathsf{I}$. u. b.(\mathbf{N}). Then a-1 is not an upper bound for \mathbf{N} . Why? Thus there is a $n \in \mathbf{N}$ such that a-1 < n. But then a < n+1. Since $n+1 \in \mathbf{N}$, a is not an upper bound for \mathbf{N} . This is a contradiction. #### Lemma Suppose $\epsilon > 0$ in **R**. Then there is a $n \in \mathbb{N}$ such that $\frac{1}{n} < \epsilon$. ### Proof. Use the first lemma, to find $n \in \mathbf{N}$ such that $\frac{1}{\epsilon} < n$. Since 0 < a < b implies $\frac{1}{b} < \frac{1}{a}$ (HW), we have $\frac{1}{n} < \epsilon$. # Getting There #### Lemma If $x \in \mathbf{R}$ then there is a $n \in \mathbf{Z}$ such that $n \le x < n + 1$. ### Proof. Let $N \in \mathbf{N}$ be such that $|x| \leq N$. Then $-N \leq x \leq N$. Since $F = \{-N, -N+1, \ldots, N\}$ is finite, we can let n be the smallest $n \in F$ such that $n \leq x$. #### Lemma Let $x \in \mathbf{R}$ and $N \in \mathbf{N}$. Then there is a $n \in \mathbf{Z}$ such that $\frac{n}{N} \le x < \frac{n+1}{N}$. ### Proof. Use the previous result to find $n \in \mathbf{Z}$ such that $n \leq Nx < n + 1$. ## The Rationals are Dense ### Proposition Suppose $x \in \mathbf{R}$ and $\epsilon > 0$. Then there is a $r \in \mathbf{Q}$ such that $|x - r| < \epsilon$. (Later, we will say that \mathbf{Q} is dense in \mathbf{R} .) #### Proof. We can find $N \in \mathbf{N}$ such that $\frac{1}{N} < \epsilon$. Then we can find $n \in \mathbf{Z}$ such that $\frac{n}{N} \le x < \frac{n+1}{N}$. Then $0 \le x - \frac{n}{N} < \frac{1}{N} < \epsilon$. Hence $|x - \frac{n}{N}| < \epsilon$. # Break Time - Well, that was fun. - ② Time for a break. ## **Decimals** #### Definition Let $D = \{0, 1, 2, \dots, 0\}$. If $\{a_1, \dots, a_n\} \subset D$ and $a_0 \in \mathbf{Z}$, then we define $$a_0.a_1a_2\cdots a_n = a_0 + \frac{a_1}{10} + \frac{a_2}{10^2} + \cdots + \frac{a_n}{10^n}.$$ (‡) We call (‡) a finite decimal expansion. ## Lemma (Rounding Off) Let $a_0.a_1 \cdots a_n$ be a finite decimal expansion. If $1 \le m < n$, then $$a_0.a_1\cdots a_m \leq a_0.a_1\cdots a_n < a_0.a_1\cdots a_m + \frac{1}{10^m}.$$ #### Remark For example, $1.23 \le 1.2345 < 1.23 + 0.01$. (Here, m = 2.) # Proof #### Proof of the Lemma. We have $$a_0.a_1 \cdots a_m \le a_0.a_1 \cdots a_m$$ $$= a_0.a_1 \cdots a_m + a_{m+1}10^{-(m+1)} + \cdots + a_n10^{-n}$$ $$\le a_0.a_1 \cdots a_m + 9 \cdot 10^{-(m+1)} + \cdots + 9 \cdot 10^{-n}$$ which, after adding $10^{-n} > 0$ to the right-hand side, is $$\leq a_0.a_1\cdots a_m+10^{-m}.$$ # Infinite Decimals Given $a_0 \in \mathbf{Z}$ and a sequence $(a_n) \subset \{0, 1, 2, \dots, 9\}$, consider the set $$S = \{ a_0.a_1 \cdots a_n : n \in \mathbf{N} \}.$$ This set is nonempty bounded aboue by $a_0.a_1 + 0.1$. Hence we can define $$a_0.a_1a_2\cdots = 1. \text{ u. b.}\{ a_0.a_1\cdots a_n : n \in \mathbf{N} \}.$$ We call $a_0.a_1a_2\cdots$ an infinite decimal expansion. #### Theorem If $x \in \mathbf{R}$, then $x = a_0.a_1a_2\cdots$ for some $a_0 \in \mathbf{Z}$ and sequence $(a_n) \subset \{0,1,\ldots,9\}$. We say that $a_0.a_1a_2\cdots$ is a decimal expansion for x. # Proof #### Sketch of the Proof. Given $m \in \mathbf{N}$, there is a $n \in \mathbf{Z}$ such that $\frac{n}{10^m} \le x \le \frac{n+1}{10^m}$. Thus $a_0.a_1 \cdots a_m \le x \le a_0.a_1 \cdots a_m + 10^{-m}$ for appropriate a_k . With more work than I want to put in here, we can see that the a_k are uniquely determined by x. Thus we can find a_{m+1} such that $$a_0.a_1\cdots a_m a_{m+1} \leq x \leq a_0.a_1\cdots a_m a_{m+1} + 10^{-(m+1)}$$. Continuing inductively, we get a sequence (a_k) such that $$x = l. u. b. \{ a_0.a_1 \cdots a_m : m \in \mathbf{N} \} = a_0.a_1a_2 \cdots. \square$$ ## Caution ### Remark Our theorem implies that every real number has an infinite decimal expansion, but for example, $1.2499999\cdots=1.2500000\cdots=1.25$. But this is all that can go wrong. # Break Time • Let's take a break. # Square Roots #### $\mathsf{Theorem}$ If $a \in \mathbf{R}$ and a > 0, then there is a unique y > 0 such that $y^2 = a$. Colloquially, every positive real number has a unique positive square root. ### Proof. If 0 < x < y, then $x^2 < y^2$. Hence if a a positive square root, then it is unique. Thus we just have to show existence. Let $S = \{x \ge 0 : x^2 \le a\}$. Since $0 \in S$, S is not empty. Let $b = \max\{a, 1\}$. Then $b^2 = b \cdot b \ge b \cdot 1 = b \ge a$. Hence b is an upper bound for S. Let y = I. u. b.(S). We want to show that $y^2 = a$. # Proof #### Proof Continued. If $b=\min\{\,a,1\,\}$, then $b^2=b\cdot b\leq b\cdot 1=b\leq a$. Hence $b\in\mathcal{S}$. Thus y>0. Now suppose $0 < \epsilon < y$. Then $0 < y - \epsilon < y < y + \epsilon$ and $(y - \epsilon)^2 < y^2 < (y + \epsilon)^2$. Since y = I. u. b.(S), there are elements in S bigger than $y - \epsilon$ and $y + \epsilon \notin S$. Thus $(y - \epsilon)^2 < a < (y + \epsilon)^2$. Subtracting gives $$(y - \epsilon)^2 - (y + \epsilon)^2 < y^2 - a < (y + \epsilon)^2 - (y - \epsilon)^2.$$ Therefore $$|y^2 - a| < (y + \epsilon)^2 - (y - \epsilon)^2 = 4y\epsilon.$$ But this has to hold for any ϵ such that $0 < \epsilon < y$. This can only happen if $|y^2 - a| = 0$. This is what we wanted to show. ### Notation #### Notation If a>0, we let \sqrt{a} be the unique positive square root of a. Of course $-\sqrt{a}$ is also a square root. If $b^2=a$, then either $b=\sqrt{a}$ or b<0. But then $-b=\sqrt{a}$. Hence $\pm\sqrt{a}$ are the only square roots of a. Naturally, we let $\sqrt{0}=0$. ## **Irrationals** #### Theorem If $x \in \mathbf{R}$ and $\epsilon > 0$, then there is an irrational number s such that $|s - x| < \epsilon$. #### Proof. It suffices to see that given a < b, there is an irrational number s such that a < s < b. I claim it suffice to see that there is some irrational number t. Then we've already seen that there is a rational number r such that $|r - (x - t)| < \epsilon$. But |r - (x - t)| = |(r + t) - x| and r + t is irrational. To show that there is an irrational number, the text gives a clever To show that there is an irrational number, the text gives a clever arguement using infinite decimal expansions. We can also show directly that $\sqrt{2}$ is irrational. We do this next. ### Proposition $\sqrt{2}$ is irrational. ### Proof. Suppose to the contrary that $\sqrt{2} = \frac{p}{q}$ with $p, q \in \mathbf{N}$. We can assume that p and q are not both even. Then $2q^2 = p^2$. This forces p to be even. Say p = 2k. Then $q^2 = 2k^2$. This forces q to be even. This contradicts our assumptions on p and q. Hence $\sqrt{2}$ is irrational. # Enough 1 That is enough for today.