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Getting Started

1 We should be recording.

2 Time for some questions!
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Picking Up From Last Time

Theorem

Suppose that (an) and (bn) are sequences of real numbers such
that limn an = a and limn bn = b. Then

1 limn→∞(an + bn) = a + b,

2 limn→∞(an − bn) = a− b,

3 limn→∞ anbn = ab, and

4 provided b and all the bn are not equal to 0, lim
n→∞

an
bn

=
a

b
.

Remark

Yesterday, we proved items 1, 2, and 3. Let’s pick continue with
item 4.
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Proof

Proof of (4).

(4) We’ll first show that 1
bn
→ 1

b . Then we can apply part (3):
an
bn

= an
1
bn
→ a 1

b = a
b .

For motivation, observe that∣∣∣ 1

bn
− 1

b

∣∣∣ =
|bn − b|
|bn||b|

.

We have to be sure that the denominator doesn’t get too small!
We can accomplish this if we ensure that |b − bn| < |b|

2 .
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Proof

Proof Continued.

Fix ε > 0. Let N be such that n ≥ N implies

|bn − b| < min{ |b|2 ,
|b|2ε
2 }. Then if n ≥ N, we have

|bn| = |b − (b − bn)| ≥ |b| − |b − bn| > |b| − |b|2 = |b|
2 . Then∣∣∣an

bn
− a

b

∣∣∣ =
|bn − b|
|bn||b|

<
|b|2ε
2

|b| · |b|2
= ε.

This completes the proof that an
bn
→ a

b and we agreed that this
suffices.
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The Reals Again: Order

Proposition

Suppose that (an) and (bn) are sequences of real numbers that
converge to a and b, respectively. If an ≤ bn for all n, then a ≤ b.

Proof.

We have limn(bn − an) = b − a. Since { x ∈ R : x ≥ 0 } is closed
and bn− an ≥ 0 for all n, we have b− a ≥ 0. That is, is b ≥ a.
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Monotonic Sequences

Definition

A sequence (an) of real numbers is called increasing if an ≤ an+1

for all n ∈ N. It is called decreasing if an ≥ an+1 for all n ∈ N. A
sequence is called monotonic if it is either and increasing sequence
or a decreasing sequence.
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Bounded Monotonic Sequences

Theorem

A bounded monotonic sequence of real numbers is convergent.

Proof.

Suppose that (an) is a bounded increasing sequence of real
numbers. Since S = { an : n ∈ N } is bounded above, we can let
u = l. u. b.(S). We will show that limn an = u. Let ε > 0. Then
u − ε is not an upper bound for S . Hence there is a N ∈ N such
that aN > u − ε. But if n ≥ N, we have

u − ε < aN ≤ an ≤ u < u + ε.

Hence n ≥ N implies |an − u| < ε.

If (an) is bounded and decreasing, consider (−an). Then
−an → u = l. u. b.−an : n ∈ N. Thus an → −u.
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A Corollary

Corollary

Suppose that a ∈ R and |a| < 1. Then limn→∞ an = 0.

Proof.

The sequence (an) is decreasing: an+1 = aan ≤ (1)an = an. Hence
limn a

n = x for some x ≥ 0. But then
ax = a(limn a

n) = limn aa
n = limn a

n+1 = limn a
n = x . Thus

0 = ax − x = (a− 1)x . Since a− 1 6= 0, we must have x = 0.
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Break Time

Time for a break and a few questions.
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Cauchy Sequences

Definition

A sequence (xn) in a metric space is called Cauchy if for all ε > 0
there is a N ∈ N such that n,m ≥ N implies d(xn, xm) < ε.

Example

Suppose that (xn) is a convergent sequence in a metric space E .
Then (xn) is Cauchy.

Solution

Suppose xn → x. Let ε > 0. Let N ∈ N be such that n ≥ N
implies d(xn, x) < ε

2 . Then if n,m ≥ N, we have

d(xn, xm) ≤ d(xn, x) + d(x , xm) <
ε

2
+
ε

2
= ε.

Thus (xn) is Cauchy.

Dana P. Williams Math 63: Winter 2021 Lecture 7



More Cauchy

Proposition

A subsequence of a Cauchy sequence is a Cauchy sequence.

Proof.

This is an exercise.

Proposition

A Cauchy sequence is bounded.

Proof.

Suppose (xn) is Cauchy. Let N be such that n,m ≥ N implies
d(xn, xm) < 1. Hence d(xn, xN) < 1 for all n ≥ N. Let

M = max{ d(x1, xN), . . . , d(xN−1, xN) }+ 1.

Then for all n ∈ N, xn ∈ BM(xN) . Hence { xn : n ∈ N } is
bounded.
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Subsequences Suffice

Proposition

Suppose that (xn) is Cauchy and that (xn) has a convergent
subsequence. Then (xn) is convergent.

Proof.

Suppose that (xnk ) converges to x . Let ε > 0. Let N be such that
n,m ≥ N implies d(xn, xm) < ε

2 . Then there is a K such that
k ≥ K implies d(xnk , x) < ε

2 . We can assume K ≥ N so that
xnK ≥ N. Now n ≥ N implies

d(xn, x) ≤ d(xn, xnK ) + d(xnK , x) =
ε

2
+
ε

2
= ε.

Since ε > 0 was arbitrary, we’ve shown xn → x .
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Completeness

Definition

A metric space E is called complete if every Cauchy sequence in E
is convergent.

Example

Let E = (0, 1] and consider (xn) where xn = 1
n . Then (xn) is

Cauchy in E . (Why?) But (xn) does not converge in E . Therefore,
E = (0, 1) is not a complete metric space.
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The Reals are Complete

Theorem

The Reals are a complete metric space.

Remark

By assumption, the Reals are a complete ordered field. But we
have to prove completeness as a metric space!

Proof.

Suppose that (xn) is Cauchy in R. Let
S = { x ∈ R : { xn : xn < x } is finite }. Since { xn : n ∈ N } is
bounded, and hence bounded below, S 6= ∅. Since { xn : n ∈ N } is
also bounded above, S is also bounded above. Let u = l. u. b.(S).
It will suffice to show that xn → u.
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Proof

Proof Continued.

Let ε > 0. Let N be such that n,m ≥ N implies |xn − xm| < ε
2 .

Then u − ε
2 ∈ S and there are only finitely many n such that

an < u − ε
2 . Hence there is a N such that n ≥ N implies

an ≥ u − ε
2 . On the other hand, u + ε

2 /∈ S and there are infinitely
many n such that an < u + ε

2 . Thus there is a m ≥ N such that
am ≥ u − ε

2 and am < u + ε
2 . Then |am − u| ≤ ε

2 . Thus if n ≥ N,
we have

|u − an| ≤ |u − am|+ |am − an| <
ε

2
+
ε

2
= ε.

Thus we shown an → u as required.
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Closed Sets

Proposition

If E is a complete metric space and if F is a closed subspace, then
F is complete.

Proof.

Suppose that (xn) is a Cauchy sequence in F . Then (xn) is also
Cauchy in E . Since E is complete, (xn) must converge to some
x ∈ E . Since F is closed and (xn) ⊂ F , we must have x ∈ F .
Hence xn → x in F and F is complete.

Example

The closed interval [0, 1] is complete in its natural metric.
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Break Time

Time for a break and some questions.

Dana P. Williams Math 63: Winter 2021 Lecture 7



Euclidean Space

Lemma

Let (xm) be a sequence in En and let xm = (x1m, . . . , x
n
m). Then

(xm) converges to x = (x1, . . . , xn) if and only if limm xkm = xk for
1 ≤ k ≤ n.

Proof.

Suppose that limm xm = x in En. Notice that for all k ,

|xkm − xk | ≤
√

(x1m − x1)2 + · · ·+ (xnm − xn)2 = d(xm, x).

Then given ε > 0 there is a N such that m ≥ N implies
|xkm − xk | ≤ d(xm, x) < ε. Thus xkm → xk for all k .
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Proof

Proof Continued.

Conversely, suppose xkm → xk for all k . Let Nk be such that
m ≥ Nk implies |xkm − xk | < ε√

n
. Let N = max{N1, . . . ,Nn }.

Then if n ≥ M,

d(xm, x) =
√

(x1m − x1)2 + · · ·+ (xnm − xn)2

<

√
ε2

n
+ · · ·+ ε2

n
= ε.

This completes the proof.
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Euclidean Space is Complete

Theorem

For all n ∈ N, Euclidean space, En, is complete.

Proof.

Let (xm) be a Cauchy sequence in En. As in the lemma, let
xm = (x1m, . . . , x

n
m). Then, also as in the proof of the lemma, for

1 ≤ k ≤ n and m, l ∈ N, we have

|xkm − xkl | ≤ d(xm, xl).

It follows that for each 1 ≤ k ≤ n, the real sequence (xkm) is
Cauchy. Since R is complete, (xkm) is convergent for each
1 ≤ k ≤ n. By the lemma, (xm) is convergent. Hence En is
complete.
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Enough

1 That is enough for today.
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