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Getting Started

1 We should be recording.

2 Our preliminary exam will be available on gradescope after
class on Friday, January 29th, and must be turned in by
Sunday January 31st by 10pm. You will have 150 minutes to
work the exam and an additional 30 minutes to scan, link, and
upload your exam to gradescope. The Exam will cover
through §III.5 in the text which I hope to finish on Monday.

3 Time for some questions!
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Picking Up From Last Time

Theorem

Suppose that (an) and (bn) are sequences of real numbers such
that limn an = a and limn bn = b. Then

1 limn→∞(an + bn) = a + b,

2 limn→∞(an − bn) = a− b,

3 limn→∞ anbn = ab, and

4 provided b and all the bn are not equal to 0, lim
n→∞

an
bn

=
a

b
.

Remark

Yesterday, we proved items 1, 2, and 3. Let’s pick continue with
item 4.
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Proof

Proof of (4).

(4) We’ll first show that 1
bn
→ 1

b . Then we can apply part (3):
an
bn

= an
1
bn
→ a 1

b = a
b .

For motivation, observe that∣∣∣ 1

bn
− 1

b

∣∣∣ =
|bn − b|
|bn||b|

.

We have to be sure that the denominator doesn’t get too small!
We can accomplish this if we ensure that |b − bn| < |b|

2 .
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Proof

Proof Continued.

Fix ε > 0. Let N be such that n ≥ N implies

|bn − b| < min{ |b|2 ,
|b|2ε
2 }. Then if n ≥ N, we have

|bn| = |b − (b − bn)| ≥ |b| − |b − bn| > |b| − |b|2 = |b|
2 . Then∣∣∣ 1

bn
− 1

b

∣∣∣ =
|bn − b|
|bn||b|

<
|b|2ε
2

|b| · |b|2
= ε.

This completes the proof that an
bn
→ a

b and we agreed that this
suffices.
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The Reals Again: Order

Proposition

Suppose that (an) and (bn) are sequences of real numbers that
converge to a and b, respectively. If an ≤ bn for all n, then a ≤ b.

Proof.

We have limn(bn − an) = b − a. Since { x ∈ R : x ≥ 0 } is closed
and bn− an ≥ 0 for all n, we have b− a ≥ 0. That is, is b ≥ a.
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Monotonic Sequences

Definition

A sequence (an) of real numbers is called increasing if an ≤ an+1

for all n ∈ N. It is called decreasing if an ≥ an+1 for all n ∈ N. A
sequence is called monotonic if it is either and increasing sequence
or a decreasing sequence.
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Bounded Monotonic Sequences

Theorem

A bounded monotonic sequence of real numbers is convergent.

Proof.

Suppose that (an) is a bounded increasing sequence of real
numbers. Since S = { an : n ∈ N } is bounded above, we can let
u = l. u. b.(S). We will show that limn an = u. Let ε > 0. Then
u − ε is not an upper bound for S . Hence there is a N ∈ N such
that aN > u − ε. But if n ≥ N, we have

u − ε < aN ≤ an ≤ u < u + ε.

Hence n ≥ N implies |an − u| < ε.

If (an) is bounded and decreasing, consider (−an). Then
−an → u = l. u. b.−an : n ∈ N. Thus an → −u.

Dana P. Williams Math 63: Winter 2021 Lecture 7



A Corollary

Corollary

Suppose that a ∈ R and |a| < 1. Then limn→∞ an = 0.

Proof.

The sequence (an) is decreasing: an+1 = aan ≤ (1)an = an. Hence
limn a

n = x for some x ≥ 0. But then
ax = a(limn a

n) = limn aa
n = limn a

n+1 = limn a
n = x . Thus

0 = ax − x = (a− 1)x . Since a− 1 6= 0, we must have x = 0.
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Break Time

Time for a break and a few questions.
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Cauchy Sequences

Definition

A sequence (xn) in a metric space is called Cauchy if for all ε > 0
there is a N ∈ N such that n,m ≥ N implies d(xn, xm) < ε.

Example

Suppose that (xn) is a convergent sequence in a metric space E .
Then (xn) is Cauchy.

Solution

Suppose xn → x. Let ε > 0. Let N ∈ N be such that n ≥ N
implies d(xn, x) < ε

2 . Then if n,m ≥ N, we have

d(xn, xm) ≤ d(xn, x) + d(x , xm) <
ε

2
+
ε

2
= ε.

Thus (xn) is Cauchy.
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More Cauchy

Proposition

A subsequence of a Cauchy sequence is a Cauchy sequence.

Proof.

This is an exercise.

Proposition

A Cauchy sequence is bounded.

Proof.

Suppose (xn) is Cauchy. Let N be such that n,m ≥ N implies
d(xn, xm) < 1. Hence d(xn, xN) < 1 for all n ≥ N. Let

M = max{ d(x1, xN), . . . , d(xN−1, xN) }+ 1.

Then for all n ∈ N, xn ∈ BM(xN) . Hence { xn : n ∈ N } is
bounded.
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Subsequences Suffice

Proposition

Suppose that (xn) is Cauchy and that (xn) has a convergent
subsequence. Then (xn) is convergent.

Proof.

Suppose that (xnk ) converges to x . Let ε > 0. Let N be such that
n,m ≥ N implies d(xn, xm) < ε

2 . Then there is a K such that
k ≥ K implies d(xnk , x) < ε

2 . We can assume K ≥ N so that
nK ≥ N. Now n ≥ N implies

d(xn, x) ≤ d(xn, xnK ) + d(xnK , x) =
ε

2
+
ε

2
= ε.

Since ε > 0 was arbitrary, we’ve shown xn → x .
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Completeness

Definition

A metric space E is called complete if every Cauchy sequence in E
is convergent.

Example

Let E = (0, 1] and consider (xn) where xn = 1
n . Then (xn) is

Cauchy in E . (Why?) But (xn) does not converge in E . Therefore,
E = (0, 1] is not a complete metric space.

Example

Let E = Q viewed as a subspace of R. Let (rn) be a sequence of
rational numbers converging to

√
2. Then (rn) is Cauchy in Q, but

does not converge (in Q). Hence Q is not complete.
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The Reals are Complete

Theorem

The Reals are a complete metric space.

Remark

By assumption, the Reals are a complete ordered field. But we
have to prove completeness as a metric space!

Proof.

Suppose that (xn) is Cauchy in R. Let
S = { x ∈ R : { n ∈ N : xn < x } is finite }. Since { xn : n ∈ N } is
bounded, and hence bounded below, S 6= ∅. Since { xn : n ∈ N } is
also bounded above, S is also bounded above. Let u = l. u. b.(S).
It will suffice to show that xn → u.
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Proof

Proof Continued.

Let ε > 0. Let N be such that n,m ≥ N implies |xn − xm| < ε
2 .

Then u − ε
2 ∈ S and there are only finitely many n such that

an < u − ε
2 . Hence there is a N such that n ≥ N implies

an ≥ u − ε
2 . On the other hand, u + ε

2 /∈ S and there are infinitely
many n such that an < u + ε

2 . Thus there is a m ≥ N such that
am ≥ u − ε

2 and am < u + ε
2 . Then |am − u| ≤ ε

2 . Thus if n ≥ N,
we have

|u − an| ≤ |u − am|+ |am − an| <
ε

2
+
ε

2
= ε.

Thus we shown an → u as required.
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Closed Sets

Proposition

If E is a complete metric space and if F is a closed subspace, then
F is complete.

Proof.

Suppose that (xn) is a Cauchy sequence in F . Then (xn) is also
Cauchy in E . Since E is complete, (xn) must converge to some
x ∈ E . Since F is closed and (xn) ⊂ F , we must have x ∈ F .
Hence xn → x in F and F is complete.

Example

The closed interval [0, 1] is complete in its natural metric.
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Break Time

Time for a break and some questions.
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Euclidean Space

Lemma

Let (xm) be a sequence in En and let xm = (x1m, . . . , x
n
m). Then

(xm) converges to x = (x1, . . . , xn) if and only if limm xkm = xk for
1 ≤ k ≤ n.

Proof.

Suppose that limm xm = x in En. Notice that for all k ,

|xkm − xk | ≤
√

(x1m − x1)2 + · · ·+ (xnm − xn)2 = d(xm, x).

Then given ε > 0 there is a N such that m ≥ N implies
|xkm − xk | ≤ d(xm, x) < ε. Thus xkm → xk for all k .
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Proof

Proof Continued.

Conversely, suppose xkm → xk for all k . Let Nk be such that
m ≥ Nk implies |xkm − xk | < ε√

n
. Let N = max{N1, . . . ,Nn }.

Then if n ≥ N,

d(xm, x) =
√

(x1m − x1)2 + · · ·+ (xnm − xn)2

<

√
ε2

n
+ · · ·+ ε2

n
= ε.

This completes the proof.
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Euclidean Space is Complete

Theorem

For all n ∈ N, Euclidean space, En, is complete.

Proof.

Let (xm) be a Cauchy sequence in En. As in the lemma, let
xm = (x1m, . . . , x

n
m). Then, also as in the proof of the lemma, for

1 ≤ k ≤ n and m, l ∈ N, we have

|xkm − xkl | ≤ d(xm, xl).

It follows that for each 1 ≤ k ≤ n, the real sequence (xkm) is
Cauchy. Since R is complete, (xkm) is convergent for each
1 ≤ k ≤ n. By the lemma, (xm) is convergent. Hence En is
complete.
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Enough

1 That is enough for today.
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