Math 63: Winter 2021 Lecture 12

Dana P. Williams

Dartmouth College

Wednesday, February 3, 2021

- We should be recording.
- 2 Time for some questions!

Theorem

Suppose that f and g are real-valued functions on E that are continuous at x_0 . Then f + g, f - g and fg are also continuous at x_0 . If in addition, $g(x_0) \neq 0$, then the quotient, $\frac{f}{g}$, is continuous (on its natural domain) at x_0 as well.

Theorem

Suppose x_0 is a cluster point of E and that f and g are real-valued functions on $\mathscr{C}\{x_0\}$ such that

$$\lim_{x\to x_0} f(x) = L \quad and \quad \lim_{x\to x_0} g(x) = M.$$

Then

$$\lim_{x\to x_0} f(x) \pm g(x) = L \pm M \quad and \quad \lim_{x\to x_0} f(x)g(x) = LM.$$

If $M \neq 0$, then

$$\lim_{x\to\infty_0}\frac{f(x)}{g(x)}=\frac{L}{M}.$$

Proposition

Define $X_k : E^n \to \mathbf{R}$ by $X_k(x_1, \ldots, x_n) = x_k$. We call the X_k the coordinate functions. Then for all $1 \le k \le n$, X_k is continuous.

Proof.

The notation is a bit cumbersome. If $p \in E^n$, then $p = (X_1(p), \ldots, X_n(p))$. Hence

$$|X_k(p) - X_k(p_0)|^2 \le \sum_{j=1}^n (X_j(p) - X_j(p_0))^2 = d(p, p_0)^2.$$

Hence given $\epsilon > 0$, we can let $\delta = \epsilon$, and then $d(p, p_0) < \delta$ implies $|X_k(p) - X_k(p_0)| < \epsilon$. That is, X_k is continuous.

Nice Functions are Continuous

Example

It now follows easily from the previous result and the last lecture that any polynomial p in the variables x_1, \ldots, x_n is continuous on E^n . For example, $p(x, y, z) = xy^2z^3 + 27xy + z + 7$ is continuous on E^3 . Similarly, any rational function—that is, the quotient of two polynomials—is continuous on its natural domain. Thus $f(x, y) = \frac{xy}{x^2+y^2}$ is continuous on $E^2 \setminus \{(0, 0)\}$.

Lemma (HW)

The function
$$f(x) = \sqrt{x}$$
 is continuous on $[0, \infty)$.

Example

Since the composition of continuous function is continuous, we have $g(x, y) = \frac{xy}{\sqrt{x^2+y^2}}$ continuous on $E^2 \setminus \{(0, 0)\}$.

Example

Example

Consider the limit $\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}}$.

Solution

Note that |x| and |y| are both bounded by $\sqrt{x^2 + y^2}$. Also, observe that if $(x, y) \neq (0, 0)$, then

$$\left|\frac{xy}{\sqrt{x^2+y^2}}\right| = |x| \left|\frac{y}{\sqrt{x^2+y^2}}\right| \le |x|.$$

Then given $\epsilon > 0$, we can let $\delta = \epsilon$ and then $0 < d((x, y), (0, 0)) < \delta$ implies $|g(x, y) - 0| < \epsilon$. Therefore the limit exists and equals 0. Therefore, the function

$$h(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & \text{if } (x,y) \neq (0,0), \text{ and} \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

is continuous on E^2 .

Time for a break and some questions.

Definition

If $f: E \to E^n$ is a function, then in our awkward notation, $f(p) = (X_1(f(p)), \ldots, X_n(f(p)))$. The real-valued functions $X_k \circ f$ are called the component functions of f. Conversely, given functions $g_k: E \to \mathbb{R}$ for $1 \le k \le n$, we can build a function $f: E \to E^n$ by $f(p) = (g_1(p), \ldots, g_n(p))$ and $X_k \circ f = g_k$.

Proposition

A function $f : E \to E^n$ is continuous at $p_0 \in E$ if and only if all its component functions $X_k \circ f$ are continuous at p_0 .

Proof.

If $f : E \to E^n$ is continuous, then $X_k \circ f$ is continuous since X_k is continuous at $f(p_0)$ (since it is continuous everywhere).

Proof Continued.

Conversely, suppose $X_k \circ f$ is continuous at p_0 for $1 \le k \le n$. Fix $\epsilon > 0$. Let $\delta_k > 0$ be such that $d^E(p, p_0) < \delta_k$ implies $|X_k(f(p)) - X_k(f(p_0))| < \frac{\epsilon}{\sqrt{n}}$. Let $\delta = \min\{\delta_1, \ldots, \delta_n\}$. Then $\delta > 0$ and $d^E(p, p_0) < \delta$ implies

$$d(f(p), f(p_0))^2 = \sum_{k=1}^n [X_k(f(p)) - X_k(f(p_0))]^2$$

 $< \sum_{k=1}^n \frac{\epsilon^2}{n} = \epsilon^2$

and $d(f(p), f(p_0)) < \epsilon$. Thus f is continuous at p_0 as claimed.

Example

Consider the limit
$$\lim_{(x,y)\to(0,0)} \frac{x^2 - y^2}{x^2 + y^2}$$
.

Solution

Let $h(x, y) = \frac{x^2 - y^2}{x^2 + y^2}$. Suppose that the limit did exist and was equal to L. Then we could extend h to a continuous function on E^2 by setting h(0,0) = L. Then f(x) = h(x,0) would be continuous and $\lim_{x\to 0} f(x) = f(0) = h(0,0) = L$. Since f(x) = 1for all $x \neq 0$, we would have to have L = 1. But we could make the same analysis for g(y) = h(0, y). Now we would have to have L = -1. Hence the limit does not exist.

Example

Consider the limit
$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^4+y^2}$$
.

Solution

Let $h(x, y) = \frac{x^2 y}{x^4 + y^2}$. Now if we approach the origin along either coordinate axis, we get the limit 0. Let's approach the origin along the line y = mx and consider $f(x) = h(x, mx) = \frac{mx^3}{x^4 + m^2x^2} = \frac{mx}{x^2 + m^2}$. Then $|f(x)| \le |x||m|^{-1}$ and $\lim_{x\to 0} f(x) = 0$. So is the limit above equal to 0? Consider $g(x) = h(x, x^2)$. Then $\lim_{x\to 0} g(x) = \frac{1}{2}$! So the limit doesn't exist. Time for another break and a few questions.

Theorem

Suppose that E and E' are metric spaces and that $f : E \to E'$ is continuous. If E is compact, then so is its image f(E).

Proof.

Let $\{ U_i \}_{i \in I}$ be a collection of open sets in E' such that

$$f(E) \subset \bigcup_{i \in I} U_i.$$

Then

$$E=\bigcup_{i\in I}f^{-1}(U_i).$$

Proof Continued.

Since f is continuous, $f^{-1}(U_i)$ is open for each $i \in I$. That is, $\{f^{-1}(U_i)\}_{i \in I}$ is an open cover of E. Since E is compact, there is a finite set $F \subset I$ such that

$$E=\bigcup_{i\in F}f^{-1}(U_i).$$

But then

$$f(E) = \bigcup_{i \in F} f(f^{-1}(U_i)) \subset \bigcup_{i \in F} U_i.$$

Since we started with an arbitrary open over of f(E), this shows f(E) is compact.

Definition

A function $f: E \to E'$ is called bounded if f(E) is bounded in E'.

Remark

A real-valued function $f : E \to \mathbf{R}$ is bounded exactly when we can find a M > 0 such that $|f(x)| \le M$ for all $x \in E$.

Proposition

Suppose that $f : E \to E'$ is continuous and that E is compact. Then f is bounded.

Proof.

We know that f(E) is compact in E' and compact sets are bounded in any metric space.

Example

Let $f: (0,1) \to \mathbf{R}$ be given by $f(x) = \frac{1}{x}$. Then f is not bounded.

Extreme Value Theorem

Theorem (Extreme Value Theorem)

Suppose that $f : E \to \mathbf{R}$ is a continuous real-valued function and that E is compact. Then f attains its maximum and minimum on E. That is, there are points $p, q \in E$ such that

 $f(p) \leq f(x) \leq f(q)$ for all $x \in E$.

Proof.

Since $f(E) \subset \mathbf{R}$ is compact, it is closed and bounded. Hence f(E) has a largest element M and a smallest element m. Then there is a $p \in E$ such that f(p) = m and a $q \in E$ such that f(q) = M.

Remark

Note that the function f(x) = x is continuous and bounded on the open interval (0,1). But it does not attain its maximum or minimum on (0,1).

1 That is enough for today.