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Getting Started

@ We should be recording.

@ Time for some questions!

Dana P. Williams Math 63: Winter 2021 Lecture 13



Suppose that E and E’ are metric spaces and that f : E — E' is
continuous. If E is compact, then so is its image f(E).

Definition
A function f : E — E’ is called bounded if f(E) is bounded in E’.

Suppose that f : E — E' is continuous and that E is compact. Then f is
bounded.

Theorem (Extreme Value Theorem)

Suppose that f : E — R is a continuous real-valued function and that E is
compact. Then f attains its maximum and minimum on E. That is, there
are points p,q € E such that

f(p) < f(x) < f(q) forallxeE.
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Uniform Continuity

RENELS

If, as usual, E and E’ are metric spaces, then f : E — E’ is
continuous at xg € E if for all ¢ > 0 there is a § > 0 so that

d(x, x0) < ¢ implies d'(f(x), f(x0)) < €. As we have seen in
examples, we get to know what € and xp are when we find §. Thus
0 is really a function of both ¢ and xg. For a good example, review
our proof of the continuity of f : (0,00) — (0, c0) where given

€ > 0 we chose

5—m|n{—e }

Definition

If E and E’ are metric spaces, then we say that f : E — E’ is
uniformly continuous if for all € > 0 there is a § > 0 such that
d(x,y) < ¢ implies d'(f(x), f(y)) < e for all x,y € E.
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Low Hanging Fruit

The point of the definition is that given ¢, our § has to work for all
x,y € E.

If f : E — E’ is uniformly continuous, then f is continuous.

Convince yourself that this is easy.

If f: E— E'is a function and S is a subset of E, then we say that
f is uniformly continuous on S if the restriction f : S — E’ is
uniformly continuous. Thus f is uniformly continuous on S if for
all € > 0 there is a § > 0 so that d(x,y) < d implies
d'(f(x),f(y)) <eforall x,y €S.
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Uniform Continuity is Special

Let f : R — R be given by f(x) = x2. Although f is clearly
continuous, it is not uniformly continuous.

We can see that this “should” to be the case with a picture.
(Document Camera). Let e = 1. Suppose there were a 6 > 0 such
that [x — y| < & implies |x*> — y?| < 1. Let x, = n and y, = n+ 1.
Then |x2 — y2| =2+ | > 2> 1= Since [x, — yn| = 1, we

n’
can pick n large enough so that |x, — y,| = % <9d. Thisis a
contradiction.
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Example

Let E be a metric space. Let A C E and define f : E — R by
f(x) =d(x,A) :=g.l.b.{d(x,y) : y € A}. Show that f is uniformly
continuous.

Let x,y € E. Then

d(x,A)=g.l.b{d(x,z):z€ A}
<g.lb{d(x,y)+d(y,z):z€ A}
=d(x,y)+g.l.b{d(y,z):z€ A}
=d(x,y) +d(y, A).

Therefore d(x,A) — d(y, A) < d(x,y). By symmetry,

|d(x,A) — d(y,A)| < d(x,y). Therefore given € > 0 we can let § = e.
Then if d(x,y) < €, we have |f(x) — f(y)| < e forall x,y € E.
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Depends on the Space

Uniform continuity depends on the space. For example, consider

f : [0,1] — R given by f(x) = x2. Then

[F(x) = F(y)] = [x2 = y2| = Ix = yllx + y| < 2lx — y] if

x,y € [0,1]. Thus given € > 0 we can let § = 5. Then [x —y| <§
implies |f(x) — f(y)| < e.
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Time for a short break and questions
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Covers of Compact Sets

Suppose that E is a compact metric space and that { U; }i¢c is a
collection of open subsets of E such that E = | J;c, U;. Then there
is a € > 0 such that given any x € E the e-ball B¢(x) is contained
in some U;.

If the result were false, then for every n € N, there is a x, € E such
that Bi(x,) is not contained in any U;. Since E is compact, (x,)

has a convergent subsequence (xp,) converging to x € E. Then
x € Uj, for some iy € I. Since Uj, is open, there is a r > 0 such
that B,(x) C Uj. Let K be such that d(xn,,x) < 5 and % < 5.
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Proof

Proof Continued.

Since ng > K, we also have i < 5. Now if z € B.1 (xpn,), we
nK
have

d(z,x) < d(z, xn,) + d(Xn, X)
< 1 +r<r+r

— - < -+ —=r.
2279

This implies B .1 (xn,) C Br(x) C Uj, and contradicts our choice
nK
of Xp,. O

<
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Compact Sets and Uniform Continuity

Suppose E and E' are metric space and f : E — E' is continuous.
If E is compact, then f is uniformly continuous.

There are two different proofs of this given in the text. Both are
worth a look. We will give a proof using the previous result here.

V.
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Proof

Proof.
Fix € > 0. Since f is continuous, for each x € E, thereisa d, >0
be such that d(y, x) < 0y implies d’(f(y), f(x)) < 5. Then

E=]Bs(x).

Now let € > 0. Since E is compact, there is a § > 0 so that for all
x € E, Bs(x) is contained in some Bs,(z). If d(x,y) <6, then as
above, for some z € E, we have Bs(x) C Bs,(z). But then

y € Bs(x) and both d(x,z) < d, and d(y,z) < J, and

d'(f(x), f(y)) < d'(f(x), f(2)) + d'(f(2), f(y)) < % n % _ .

Since x,y € E are arbitrary, f is uniformly continuous. Ol
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Time for a break and some questions.
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Proposition

Suppose that f : (0,1] — R is continuous. Show that we can
extend to a continuous function g : [0,1] — R if and only if f is
uniformly continuous on (0, 1].

Proof.

If g exists, then g is uniformly continuous since [0, 1] is compact.
Hence f is uniformly continuous on (0, 1].

Now assume f is uniformly continuous. Let (x,) be a sequence in
(0, 1] converging to 0. Then (x,) is Cauchy. | claim (f(x,)) is
Cauchy. Let € > 0. Then there is a § > 0 such that [x — y| < d
implies |f(x) — f(y)| < e if x,y € (0,1]. But thereisa N € N
such that n,m > N implies |x, — yp| < 0. Then

|f(xn) — f(xm)| < €. Therefore (f(x,)) is Cauchy, and since R is
complete, there is a L € R such that f(x,) — L € R.
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Proof

Proof Continued.

Now we define g(0) = L (of course, g(x) = f(x) if x € (0,1]). We need
to see that g is continuous. Since g extends f, g is easily seen to be
continuous at any xp € (0, 1]: this is because g agrees with f on an open
ball centered at xp and hence limy_x, g(x) = limx_x, f(x) = f(x0). (We
sometimes say that continuity is a local property.)

To show that g is continuous at 0 it suffices to show that

limy_0g(x) = limy_0 f(x) = L. Let € > 0. Since f is uniformly
continuous we can find 4’ > 0 be such that |x — y| < ¢’ implies

|f(x) — f(y)| < 5 forall x,y € (0,1]. Let (x,) be the sequence used to
define L above. Then there is a N such that [xy — 0] < %/ ‘=0 and
[f(xn) — L| < §. Thenif 0 < [x —0] < § = &, we have |x — xy| < & and

€

[FO) = LI < 1F(0) = FOm)| + [FGa) = L] < 5 + 5

Thus limy_ f(x) = L and we're done. O
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Some Fun

Example

The function f(x) = % is not uniformly continuous on (0,1). This
an example worked out in the text. However, this follows easily
from our proposition (since f trivially extends continuously to

(0, 1], but can't be extended continuously to 0 since lim,_,o f(x)
does not exist).
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Getting Nasty

Example

Let's suspend the rules for bit and assume we know the usual
things about f(x) = sin(x). Then it is shown carefully in the text
that g(x) = sin(%) is not uniformly continuous on (0, 1].

X

0.5

—0.25

Figure: The Graph of y = sin(l)

X

Of course, we could establish this just by showing that
limx—osin(%) does not exist.
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More

Example (More Interesting)

We can get a bit more funky by considering h(x) = Xsin(i).

n“/\/\\ ]

Figure: The Graph of y = Xsin(l)

X

Since |sin(x)| < 1 for all x, we can show directly that

lim xsin(%) =0.

x—0

Thus by our proposition, h(x) = xsin() is uniformly continuous on (0, 1].
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@ That is enough for today.
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