Math 63: Winter 2021 Lecture 13

Dana P. Williams

Dartmouth College

Friday, February 5, 2021

Getting Started

- We should be recording.
- 2 Time for some questions!

Review

Theorem

Suppose that E and E' are metric spaces and that $f: E \to E'$ is continuous. If E is compact, then so is its image f(E).

Definition

A function $f: E \to E'$ is called bounded if f(E) is bounded in E'.

Proposition

Suppose that $f: E \to E'$ is continuous and that E is compact. Then f is bounded.

Theorem (Extreme Value Theorem)

Suppose that $f: E \to \mathbf{R}$ is a continuous real-valued function and that E is compact. Then f attains its maximum and minimum on E. That is, there are points $p, q \in E$ such that

$$f(p) \le f(x) \le f(q)$$
 for all $x \in E$.

Uniform Continuity

Remark

If, as usual, E and E' are metric spaces, then $f: E \to E'$ is continuous at $x_0 \in E$ if for all $\epsilon > 0$ there is a $\delta > 0$ so that $d(x,x_0) < \delta$ implies $d'(f(x),f(x_0)) < \epsilon$. As we have seen in examples, we get to know what ϵ and x_0 are when we find δ . Thus δ is really a function of both ϵ and x_0 . For a good example, review our proof of the continuity of $f:(0,\infty)\to(0,\infty)$ where given $\epsilon>0$ we chose

$$\delta = \min \left\{ \frac{x_0}{2}, \epsilon \frac{x_0^2}{2} \right\}.$$

Definition

If E and E' are metric spaces, then we say that $f: E \to E'$ is uniformly continuous if for all $\epsilon > 0$ there is a $\delta > 0$ such that $d(x,y) < \delta$ implies $d'(f(x),f(y)) < \epsilon$ for all $x,y \in E$.

Low Hanging Fruit

Remark

The point of the definition is that given ϵ , our δ has to work for all $x,y\in E$.

Lemma

If $f: E \to E'$ is uniformly continuous, then f is continuous.

Proof.

Convince yourself that this is easy.

Remark

If $f: E \to E'$ is a function and S is a subset of E, then we say that f is uniformly continuous on S if the restriction $f: S \to E'$ is uniformly continuous. Thus f is uniformly continuous on S if for all $\epsilon > 0$ there is a $\delta > 0$ so that $d(x,y) < \delta$ implies $d'(f(x),f(y)) < \epsilon$ for all $x,y \in S$.

Uniform Continuity is Special

Example

Let $f : \mathbf{R} \to \mathbf{R}$ be given by $f(x) = x^2$. Although f is clearly continuous, it is **not** uniformly continuous.

Solution

We can see that this "should" to be the case with a picture. (Document Camera). Let $\epsilon=1$. Suppose there were a $\delta>0$ such that $|x-y|<\delta$ implies $|x^2-y^2|<1$. Let $x_n=n$ and $y_n=n+\frac{1}{n}$. Then $|x_n^2-y_n^2|=|2+\frac{1}{n^2}|>2>1=\epsilon$. Since $|x_n-y_n|=\frac{1}{n}$, we can pick n large enough so that $|x_n-y_n|=\frac{1}{n}<\delta$. This is a contradiction.

Example

Example

Let E be a metric space. Let $A \subset E$ and define $f : E \to \mathbf{R}$ by f(x) = d(x, A) := g. I. b. $\{d(x, y) : y \in A\}$. Show that f is uniformly continuous.

Solution

Let $x, y \in E$. Then

$$d(x, A) = g. l. b. \{ d(x, z) : z \in A \}$$

$$\leq g. l. b. \{ d(x, y) + d(y, z) : z \in A \}$$

$$= d(x, y) + g. l. b. \{ d(y, z) : z \in A \}$$

$$= d(x, y) + d(y, A).$$

Therefore $d(x,A) - d(y,A) \le d(x,y)$. By symmetry, $|d(x,A) - d(y,A)| \le d(x,y)$. Therefore given $\epsilon > 0$ we can let $\delta = \epsilon$. Then if $d(x,y) < \epsilon$, we have $|f(x) - f(y)| < \epsilon$ for all $x,y \in E$.

Depends on the Space

Example

Uniform continuity depends on the space. For example, consider $f:[0,1]\to \mathbf{R}$ given by $f(x)=x^2$. Then $|f(x)-f(y)|=|x^2-y^2|=|x-y||x+y|\leq 2|x-y|$ if $x,y\in[0,1]$. Thus given $\epsilon>0$ we can let $\delta=\frac{\epsilon}{2}$. Then $|x-y|<\delta$ implies $|f(x)-f(y)|<\epsilon$.

Break Time

Time for a short break and questions

Covers of Compact Sets

Theorem

Suppose that E is a compact metric space and that $\{U_i\}_{i\in I}$ is a collection of open subsets of E such that $E=\bigcup_{i\in I}U_i$. Then there is a $\epsilon>0$ such that given any $x\in E$ the ϵ -ball $B_\epsilon(x)$ is contained in some U_i .

Proof.

If the result were false, then for every $n \in \mathbf{N}$, there is a $x_n \in E$ such that $B_{\frac{1}{n}}(x_n)$ is not contained in any U_i . Since E is compact, (x_n) has a convergent subsequence (x_{n_k}) converging to $x \in E$. Then $x \in U_{i_0}$ for some $i_0 \in I$. Since U_{i_0} is open, there is a r > 0 such that $B_r(x) \subset U_{i_0}$. Let K be such that $d(x_{n_K}, x) < \frac{r}{2}$ and $\frac{1}{K} < \frac{r}{2}$.

Proof

Proof Continued.

Since $n_K \ge K$, we also have $\frac{1}{n_K} < \frac{r}{2}$. Now if $z \in B_{\frac{1}{n_K}}(x_{n_k})$, we have

$$d(z,x) \le d(z,x_{n_K}) + d(x_{n_K},x) < \frac{1}{n_K} + \frac{r}{2} < \frac{r}{2} + \frac{r}{2} = r.$$

This implies $B_{\frac{1}{n_K}}(x_{n_K}) \subset B_r(x) \subset U_{i_0}$ and contradicts our choice of x_{n_K} .

Compact Sets and Uniform Continuity

Theorem

Suppose E and E' are metric space and $f: E \to E'$ is continuous. If E is compact, then f is uniformly continuous.

Remark

There are two different proofs of this given in the text. Both are worth a look. We will give a proof using the previous result here.

Proof

Proof.

Fix $\epsilon > 0$. Since f is continuous, for each $x \in E$, there is a $\delta_x > 0$ be such that $d(y,x) < \delta_x$ implies $d'(f(y),f(x)) < \frac{\epsilon}{2}$. Then

$$E=\bigcup_{x\in E}B_{\delta_x}(x).$$

Now let $\epsilon > 0$. Since E is compact, there is a $\delta > 0$ so that for all $x \in E$, $B_{\delta}(x)$ is contained in some $B_{\delta_z}(z)$. If $d(x,y) < \delta$, then as above, for some $z \in E$, we have $B_{\delta}(x) \subset B_{\delta_z}(z)$. But then $y \in B_{\delta}(x)$ and both $d(x,z) < \delta_z$ and $d(y,z) < \delta_z$ and

$$d'(f(x),f(y)) \leq d'(f(x),f(z)) + d'(f(z),f(y)) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Since $x, y \in E$ are arbitrary, f is uniformly continuous.

Break Time

Time for a break and some questions.

Example

Proposition

Suppose that $f:(0,1]\to \mathbf{R}$ is continuous. Show that we can extend to a continuous function $g:[0,1]\to \mathbf{R}$ if and only if f is uniformly continuous on (0,1].

Proof.

If g exists, then g is uniformly continuous since [0,1] is compact. Hence f is uniformly continuous on (0,1].

Now assume f is uniformly continuous. Let (x_n) be a sequence in (0,1] converging to 0. Then (x_n) is Cauchy. I claim $(f(x_n))$ is Cauchy. Let $\epsilon>0$. Then there is a $\delta>0$ such that $|x-y|<\delta$ implies $|f(x)-f(y)|<\epsilon$ if $x,y\in(0,1]$. But there is a $N\in\mathbf{N}$ such that $n,m\geq N$ implies $|x_n-y_n|<\delta$. Then $|f(x_n)-f(x_m)|<\epsilon$. Therefore $(f(x_n))$ is Cauchy, and since \mathbf{R} is complete, there is a $L\in\mathbf{R}$ such that $f(x_n)\to L\in\mathbf{R}$.

Proof

Proof Continued.

Now we define g(0)=L (of course, g(x)=f(x) if $x\in(0,1]$). We need to see that g is continuous. Since g extends f, g is easily seen to be continuous at any $x_0\in(0,1]$: this is because g agrees with f on an open ball centered at x_0 and hence $\lim_{x\to x_0}g(x)=\lim_{x\to x_0}f(x)=f(x_0)$. (We sometimes say that continuity is a local property.)

To show that g is continuous at 0 it suffices to show that $\lim_{x\to 0}g(x)=\lim_{x\to 0}f(x)=L$. Let $\epsilon>0$. Since f is uniformly continuous we can find $\delta'>0$ be such that $|x-y|<\delta'$ implies $|f(x)-f(y)|<\frac{\epsilon}{2}$ for all $x,y\in(0,1]$. Let (x_n) be the sequence used to define L above. Then there is a N such that $|x_N-0|<\frac{\delta'}{2}:=\delta$ and $|f(x_N)-L|<\frac{\epsilon}{2}$. Then if $0<|x-0|<\delta=\frac{\delta'}{2}$, we have $|x-x_N|<\delta'$ and

$$|f(x)-L|\leq |f(x)-f(x_N)|+|f(x_N)-L|<\frac{\epsilon}{2}+\frac{\epsilon}{2}.$$

Thus $\lim_{x\to 0} f(x) = L$ and we're done.

Some Fun

Example

The function $f(x)=\frac{1}{x}$ is not uniformly continuous on (0,1). This an example worked out in the text. However, this follows easily from our proposition (since f trivially extends continuously to (0,1], but can't be extended continuously to 0 since $\lim_{x\to 0} f(x)$ does not exist).

Getting Nasty

Example

Let's suspend the rules for bit and assume we know the usual things about $f(x) = \sin(x)$. Then it is shown carefully in the text that $g(x) = \sin(\frac{1}{x})$ is not uniformly continuous on (0,1].

Figure: The Graph of $y = \sin(\frac{1}{x})$

Of course, we could establish this just by showing that $\lim_{x\to 0}\sin\left(\frac{1}{x}\right)$ does not exist.

More

Example (More Interesting)

We can get a bit more funky by considering $h(x) = x \sin(\frac{1}{x})$.

Figure: The Graph of $y = x \sin(\frac{1}{x})$

Since $|\sin(x)| \le 1$ for all x, we can show directly that

$$\lim_{x \to 0} x \sin\left(\frac{1}{x}\right) = 0.$$

Thus by our proposition, $h(x) = x \sin(\frac{1}{x})$ is uniformly continuous on (0,1].

Enough

1 That is enough for today.