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Getting Started

1 We should be recording.

2 Remember it is better for me if you have your video on so
that I don’t feel I’m just talking to myself.

3 Our midterm will be available Friday after class and due
Sunday by 10pm. It will cover through Monday’s lecture.
More details soon.

4 Time for some questions!
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Review

Definition

Suppose that E and E ′ are metric spaces and that (fn) is a
sequence of functions from E to E ′. We say that (fn) converges at
p ∈ E if the sequence (fn(p)) converges in E ′. We say that (fn)
converges pointwise if it converges for all p ∈ E . If (fn) converges
pointwise and we let

f (p) = lim
n→∞

fn(p) for all p ∈ E ,

the we say that (fn) converges pointwise to f on E . We sometimes
write “fn → f pointwise on E”.

Remark

We can reformulate the definition that (fn) converge to f pointwise
on E as follows. For all p ∈ E and for all ε > 0 there is a N ∈ N
such that n ≥ N implies d ′(fn(p), f (p)) < ε. Thus N = N(ε, p)
depends on both ε and p.
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Review

Definition

Suppose that E and E ′ are metric spaces and that (fn) is a
sequence of functions from E to E ′. If f : E → E ′ is a function,
then we say that (fn) converges uniformly to f on E if for all ε > 0
there is a N ∈ N such that for all n ≥ N we have
d ′(fn(x), f (x)) < ε for all x ∈ E .

Definition

Let E and E ′ be metric spaces and (fn) a sequence of functions
from E to E ′. We say that (fn) is uniformly Cauchy if for all ε > 0
there is a N ∈ N such that m, n ≥ N implies

d ′(fn(x), fm(x)) < ε for all x ∈ E .
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Continuity

Remark

If E is a metric space and f , g : E → R are continuous real-valued
functions, then h(x) = |f (x)− g(x)| is clearly continuous: we
know f − g is continuous and the absolute-value function is
continuous so so is their composition. It will be convenient to
dress this up a little for functions mapping into a metric space E ′.

Lemma

Suppose that E and E ′ are metric spaces and that f , g : E → E ′

are continuous. Then so is h(x) = d ′(f (x), g(x)).

Remark

To prove this, it will be useful to recall the “reverse triangle
inequality”: |d ′(x , z)− d ′(y , z)| ≤ d ′(x , y) for any metric d ′.

Dana P. Williams Math 63: Winter 2021 Lecture 16



Proof

Proof of the Lemma.

If x , y ∈ E , then

|h(y)− h(x)| = |d ′(f (y), g(y))− d ′(f (x), g(x))|
≤ |d ′(f (y), g(y))− d ′(f (x), g(y)|

+ |d ′(f (x), g(y))− d ′(f (x), g(x))|
≤ d ′(f (y), f (x)) + d ′(g(y), g(x)).

Then, since f and g are continuous at x , given ε > 0, we can
choose δ > 0 so that d(y , x) < δ implies both d ′(f (y), f (x)) < ε

2
and d ′(g(y), g(x)) < ε

2 . But then d(y , x) < δ implies
|h(x)− h(y)| < ε as required.
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Function Metric

Remark

Suppose that E and E ′ are metric spaces with E compact. Then if
f , g : E → E ′ are continuous, h(x) = d ′(f (x), g(x)) is continuous
on E , and must attain its maximum. Hence we can define

D(f , g) = max{ d ′(f (x), g(x)) : x ∈ E }.

We think of D(f , g) as the “distance” from f to g . Some pictures
are useful here.
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Continuous Functions on E

Definition

Let E and E ′ be metric spaces with E compact. We let C (E ,E ′)
be the set of all continuous functions f : E → E ′. If E ′ = R, then
we usually write C (E ) in place of C (E ,R).

Remark

Part of the message in the previous slide is that
D(f , g) = max{ d ′(f (x), g(x)) : x ∈ E } defines a function
D : C (E ,E ′)× C (E ,E ′)→ [0,∞).

Proposition

If E and E ′ are metric spaces with E compact then D is a metric
on E and

(
C (E ,E ′),D

)
is a metric space.
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Proof

Proof.

We have to check the three axioms for a metric. Clearly
D(f , g) = 0 if and only if f = g , and D(f , g) = D(g , f ). So the
only issue is the triangle inequality. But if f , g , h ∈ C (E ,E ′) then

d ′(f (x), h(x)) ≤ d ′(f (x), g(x)) + d ′(g(x), h(x)).

Therefore

D(f , h) ≤ max{ d ′(f (x), g(x)) + d ′(g(x), h(x)) : x ∈ E }
≤ max{ d ′(f (x), g(x)) : x ∈ E }

+ max{ d ′(g(x), h(x)) : x ∈ E }
= D(f , g) + D(g , h).

Thus D is a metric and
(
C (E ,E ′),D

)
is a metric space.

Dana P. Williams Math 63: Winter 2021 Lecture 16



Break Time

Time for a break and some questions.
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Convergence

Proposition

Suppose that E and E ′ are metric spaces with E compact. Let (fn)
be a sequence in C (E ,E ′). Then (fn) converges to f in the metric
space

(
C (E ,E ′),D

)
if and only if (fn) converges uniformly to f

on E .

Proof.

This is just untangling definitions. Suppose that (fn) converges to
f in C (E ,E ′). Then given ε > 0 there is a N ∈ N such that n ≥ N
implies D(fn, f ) < ε. But then for all n ≥ N we have

max{ d ′(fn(x), f (x)) : x ∈ E } < ε.

That is, n ≥ N implies d ′(fn(x), f (x)) < ε for all x ∈ E . Therefore
(fn) converges uniformly to f on E .
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Proof

Proof Continued.

Conversely, suppose that (fn) converges uniformly to f on E . Then
given ε > 0, there is a N ∈ N such that n ≥ N implies that

d ′(fn(x), f (x)) < ε for all x ∈ E

Since the maximum of d ′(fn(x), f (x)) is attained on E , it follows
that D(fn, f ) < ε if n ≥ N. This shows that (fn) converges to f in
C (E ,E ′).
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Completeness

Theorem

Suppose that E and E ′ are metric spaces with E compact and E ′

complete. Then
(
C (E ,E ′),D

)
is complete.

Proof.

Let (fn) be a Cauchy sequence in C (E ,E ′). Then given ε > 0,
there is a N ∈ N such that m, n ≥ N implies D(fn, fm) < ε. But
then

max{ d ′(fn(x), fm(x)) : x ∈ E } < ε,

and
d ′(fn(x), fm(x)) < ε for all x ∈ E .

This shows that (fn) is uniformly Cauchy. Since E ′ is complete, we
know that there is a function f : E → E ′ such that (fn) converges
uniformly to f . Since the fn are continuous, we know that f is
continuous. Thus f ∈ C (E ,E ′) and (fn) converges to f in
C (E ,E ′). This completes the proof.
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Break Time

Time for a break and questions.
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Calculus!

Remark

Having gone off the deep end—abstraction-wise—with C (E ,E ′),
let’s get real and consider the derivatives of real-valued functions
on subsets of R. Note that if U ⊂ R is open, then every x0 ∈ U is
a cluster point of U and it makes sense to consider limx→x0 g(x)
for any function g defined on U ∩ C {x0}. Since we’ve defined a
neighborhood of x0 to be a set containing an open set containing
x0, we can consider such limits for any g defined on a
neighborhood of x0.
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Derivatives

Definition

Suppose f is a real-valued function defined on a neighborhood of
x0 ∈ R. Then we say that f is differentiable at x0 is

lim
x→x0

f (x)− f (x0)

x − x0
(†)

exists. In that case, we write f ′(x0) for the (unique) value of the
limit and call f ′(x0) the derivative of f at x0.

Remark

It is easy to verify that we can replace (†) with

lim
h→0

f (x0 + h)− f (x0)

h

for h is a neighborhood of 0.
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Linear Approximation

Remark

If f ′(x0) exists, then limx→x0
f (x)−f (x0)

x−x0 = f ′(x0). Alternatively,

limx→x0
f (x)−f (x0)

x−x0 − f ′(x0) = 0. Equivalently,

lim
x→x0

f (x)− L(x)

x − x0
= 0.

where L(x) = f (x0) + f ′(x0)(x − x0). This is a very strong way of
saying that the linear function L(x) is a good approximation to
f (x) near x0. For example, if f is continuous at x0 and
M(x) = M(x0) + k(x − x0) is any linear function, then

lim
x→x0

f (x)−M(x) = 0

if and only if M(x0) = f (x0). Clearly this is unimpressive. (Look at
some pictures!)
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The Best Linear Approximation

Proposition

Suppose that f is a real-valued function defined on a neighborhood
of x0 ∈ R which is continuous at x0. Suppose that
M(x) = M(x0) + k(x − x0) is a linear function such that

lim
x→x0

f (x)−M(x)

x − x0
= 0.

Then f is differentiable at x0 and M(x) = f (x0) + f ′(x0)(x − x0).

Proof.

Since f and M are both continuous at x0, we have

f (x0)−M(x0) = lim
x→x0

f (x)−M(x)

= lim
x→x0

f (x)−M(x)

x − x0
(x − x0) = 0.

Therefore M(x0) = f (x0).
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Proof

Proof Continued.

Then

lim
x→x0

f (x)− f (x0)

x − x0
= lim

x→x0

f (x)−M(x0)− k(x − x0) + k(x − x0)

x − x0

lim
x→x0

[ f (x)−M(x)

x − x0
+ k
]

= 0 + k = k.

Thus f is differentiable at x0 and k = f ′(x0).
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Better Than Continuous

Proposition

If f is differentiable at x0, then f is continuous at x0.

Proof.

Since f is defined in a neighborhood of x0, it follows that f is
continuous at x0 if and only if limx→x0 f (x) = f (x0). This is
equivalent to limx→x0

[
f (x)− f (x0)

]
= 0. But

lim
x→x0

[
f (x)− f (x0)

]
= lim

x→x0

f (x)− f (x0)

x − x0
(x − x0)

= f ′(x0) · 0 = 0.
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Differentiable Functions

Definition

If U is an open set in R that we say that a real-valued function on
U is differentiable if it is differentiable at every point of of U.
Then we obtain a new function, f ′ : U → R, in the obvious way.
The notation df

dx (x) is also used.

Remark

While a differentiable function is necessarily continuous, a
continuous function need not be differentiable. For example,
consider f (x) = |x |. To see if f ′(0) exists, we consider the limit

lim
x→0

|x | − |0|
x − 0

= lim
x→0

|x |
x

where you can show does not exist. In fact, there are continuous
functions on R that don’t have a derivative at a single point!
However, proving that such functions exist is beyond the scope of
this course.
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Rules To Differentiate With

The following are routine consequences of the definition.

Lemma

If f (x) = c for all x ∈ R, then f ′(x) = 0 for all x ∈ R. If f (x) = x
for all x ∈ R, then f ′(x) = 1 for all x ∈ R.

Theorem

Suppose that f and g are differentiable at x0. Then so are f ± g ,
fg , and if g(x0) 6= 0, f

g . Futhermore,

1 (f ± g)′(x0) = f ′(x0)± g ′(x0),

2 (fg)′(x0) = f ′(x0)g(x0) + f (x0)g ′(x0), and

3
(
f
g

)′
(x0) = f ′(x0)g(x0)−f (x0)g ′(x0)

g(x0)2
.
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Proof

Proof.

(1) This is routine and you should convince yourself of that.

(2) We compute

lim
x→x0

f (x)g(x)− f (x0)g(x0)

x − x0

= lim
x→x0

f (x)g(x)− f (x0)g(x) + f (x0)g(x)− f (x0)g(x0)

x − x0

= lim
x→x0

f (x)− f (x0)

x − x0
g(x)+

lim
x→x0

f (x0)
g(x)− g(x0)

x − x0
= f ′(x0)g(x0) + f (x0)g ′(x0)

where we used the fact that g is continuous at x0 to conclude that
limx→x0 g(x) = g(x0).
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Proof

Proof Continued.

(3) First we consider 1
g(x) . Since g(x0) 6= 0 and g is continuous at

x0, we can conclude that g(x) 6= 0 near x0. Hence we can compute
that

lim
x→x0

1
g(x) −

1
g(x0)

x − x0
= lim

x→x0

g(x0)− g(x)

(x − x0)g(x)g(x0)

= − g ′(x0)

g(x0)2
.

Now we can use the product rule (aka (2)) to compute

( f
g

)′
(x0) =

(
f
( 1

g

))′
(x0) = f ′(x0)

1

g(x0)
+ f (x0)

−g ′(x0)

g(x0)2

=
f ′(x0)g(x0)− f (x0)g ′(x0)

g(x0)2
.
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Enough

1 That is enough for today.
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