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Getting Started

@ We should be recording.

@ Remember it is better for me if you have your video on so
that | don't feel I'm just talking to myself.

© Our midterm will be available Friday after class and due

Sunday by 10pm. It will cover through Monday’s lecture.
More details soon.

@ Time for some questions!

Dana P. Williams Math 63: Winter 2021 Lecture 16



Suppose that E and E’ are metric spaces and that (f,) is a
sequence of functions from E to E’. We say that (f,) converges at
p € E if the sequence (f,(p)) converges in E’. We say that (f,)
converges pointwise if it converges for all p € E. If (f,) converges
pointwise and we let

f(p) = lim f,(p) forall peE,

n—00

the we say that (f,) converges pointwise to f on E. We sometimes
write “f, — f pointwise on E".

We can reformulate the definition that (f,) converge to f pointwise
on E as follows. For all p € E and for all ¢ > 0 thereisa N € N
such that n > N implies d'(f,(p), f(p)) < €. Thus N = N(e, p)
depends on both € and p.
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Suppose that E and E’ are metric spaces and that (f,) is a
sequence of functions from E to E’. If f : E — E’ is a function,
then we say that (f,) converges uniformly to f on E if for all ¢ > 0
there is a N € N such that for all n > N we have

d'(fa(x), f(x)) < e for all x € E.

Let E and E’ be metric spaces and (f,) a sequence of functions
from E to E’. We say that (f,) is uniformly Cauchy if for all € > 0
there is a N € N such that m,n > N implies

d'(fa(x), fm(x)) < € forall x € E.
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Continuity

If E is a metric space and f, g : E — R are continuous real-valued
functions, then h(x) = |f(x) — g(x)| is clearly continuous: we
know f — g is continuous and the absolute-value function is
continuous so so is their composition. It will be convenient to
dress this up a little for functions mapping into a metric space E’.

Suppose that E and E' are metric spaces and that f,g : E — E’
are continuous. Then so is h(x) = d'(f(x), g(x)).

To prove this, it will be useful to recall the “reverse triangle
inequality”: |d'(x, z) — d'(y,z)| < d'(x, y) for any metric d'.
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Proof

Proof of the Lemma.
If x,y € E, then

|h(y) — h(x)| = |d'(f(y), &(y)) — d'(f(x), g(x))]

<|d'(f(y),&(y)) — d'(f(x),&(y)l
+1d'(f(x),&(y)) — d'(f(x), g(x))]

< d'(f(y), f(x)) +d'(g(y), g(x))-

Then, since f and g are continuous at x, given € > 0, we can
choose § > 0 so that d(y, x) < 0 implies both d'(f(y),f(x)) < 5
and d’(g(y),g(x)) < 5. But then d(y,x) < § implies

|h(x) — h(y)| < € as required. O

v
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Function Metric

Remark

Suppose that E and E’ are metric spaces with E compact. Then if
f,g: E — E’ are continuous, h(x) = d'(f(x),g(x)) is continuous
on E, and must attain its maximum. Hence we can define

D(f,g) = max{ d'(f(x),g(x)) : x € E}.

We think of D(f, g) as the “distance” from f to g. Some pictures
are useful here. |

Dana P. Williams Math 63: Winter 2021 Lecture 16



Continuous Functions on E

Let E and E’ be metric spaces with E compact. We let C(E, E')
be the set of all continuous functions f : E — E’. If E' = R, then

we usually write C(E) in place of C(E,R).

Part of the message in the previous slide is that
D(f,g) = max{ d'(f(x),g(x)) : x € E } defines a function
D:C(E,E") x C(E,E") — [0,00).

If E and E' are metric spaces with E compact then D is a metric
on E and (C(E,E’), D) is a metric space.

N,
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Proof

Proof.

We have to check the three axioms for a metric. Clearly
D(f,g) =0 if and only if f = g, and D(f,g) = D(g, f). So the
only issue is the triangle inequality. But if f, g, h € C(E, E’) then

d'(f(x), h(x)) < d'(f(x), g(x)) + d'(g(x), h(x)).

Therefore

D(f, h) < max{ d'(F(x), g(x)) + d'(g(x), h(x)) : x € E }
< max{d'(f(x),g(x)): x € E}
+ max{ d’'(g(x),h(x)) : x € E}
= D(f,g)+ D(g, h).

Thus D is a metric and (C(E, E’), D) is a metric space. O
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Time for a break and some questions.
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Convergence

Suppose that E and E' are metric spaces with E compact. Let (fy)
be a sequence in C(E,E"). Then (f,) converges to f in the metric
space (C(E, E'), D) if and only if (f,) converges uniformly to f

on E.

This is just untangling definitions. Suppose that (f,) converges to
fin C(E,E"). Then given € > 0 there isa N € N such that n > N
implies D(f,, f) < €. But then for all n > N we have

max{ d'(f(x), f(x)) : x € E} <e.

That is, n > N implies d’(fp(x), f(x)) < € for all x € E. Therefore
(f,) converges uniformly to f on E.
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Proof

Proof Continued.

Conversely, suppose that (f,) converges uniformly to f on E. Then
given € > 0, there is a N € N such that n > N implies that

d'(fa(x), f(x)) <e forallxe E

Since the maximum of d’(f,(x), f(x)) is attained on E, it follows
that D(f,, f) < e if n > N. This shows that (f,) converges to f in
C(E,E"). O

v

Dana P. Williams Math 63: Winter 2021 Lecture 16



Completeness

Suppose that E and E' are metric spaces with E compact and E’
complete. Then (C(E, E", D) is complete.

Proof.

Let (f,) be a Cauchy sequence in C(E, E’). Then given € > 0,
there is a N € N such that m, n > N implies D(f,, fm) < €. But
then

max{ d'(f(x), fm(x)) : x € E} < ¢,

and
d'(fa(x), fim(x)) < € forall x € E.

This shows that (f,) is uniformly Cauchy. Since E’ is complete, we
know that there is a function f : E — E’ such that (f,) converges
uniformly to 7. Since the f, are continuous, we know that f is
continuous. Thus f € C(E, E’) and (f,) converges to f in

C(E, E’). This completes the proof. ]
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Time for a break and questions.
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Calculus!

Remark

Having gone off the deep end—abstraction-wise—with C(E, E'),
let's get real and consider the derivatives of real-valued functions
on subsets of R. Note that if U C R is open, then every xg € U is
a cluster point of U and it makes sense to consider limy_,,, g(x)
for any function g defined on U N % {xp}. Since we've defined a
neighborhood of xp to be a set containing an open set containing
Xp, we can consider such limits for any g defined on a
neighborhood of xg.
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Derivatives

Suppose f is a real-valued function defined on a neighborhood of
xp € R. Then we say that f is differentiable at xg is

i F00 = ()

X—X0 X — X0

(1)

exists. In that case, we write f'(xp) for the (unique) value of the
limit and call f'(xp) the derivative of f at xp.

It is easy to verify that we can replace () with

f(Xo —+ h) — f(Xo)

lim
h—0

for h is a neighborhood of 0.
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Linear Approximation

If f'(x0) exists, then limy_, %;EXO) = '(x0). Alternatively,
limy—x %}iém) — f'(x0) = 0. Equivalently,
f(x)—L

jim ()L _

X—rX0 X — X0
where L(x) = f(x0) + f'(x0)(x — xp). This is a very strong way of
saying that the linear function L(x) is a good approximation to
f(x) near xg. For example, if f is continuous at xp and
M(x) = M(xo) + k(x — xo) is any linear function, then

Xllj)lo f(x)—M(x)=0

if and only if M(xp) = f(xo). Clearly this is unimpressive. (Look at
some pictures!)
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The Best Linear Approximation

Suppose that f is a real-valued function defined on a neighborhood
of xo € R which is continuous at xg. Suppose that
M(x) = M(x0) + k(x — x0) is a linear function such that

i F0) = M)

X—X0 X — Xo

Then f is differentiable at xo and M(x) = f(xo) + '(x0)(x — x0)-

Since f and M are both continuous at xg, we have

=0.

f(x0) — M(x0) = XILnj(O f(x) — M(x)
) = M)

X—rX0 X — XO

(x —x0) = 0.

Therefore M(xp) = f(x0).
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Proof

Proof Continued.

Then
lim M — lim f(X) - M(XO) — k(X — XO) + k(x — XO)
X—rXQ X — X0 X—X0 X — Xo
lim MJFI(] — 04 k=k
X—X0 X — Xp
Thus f is differentiable at xo and k = f/(xo). 0
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Better Than Continuous

Proposition
If f is differentiable at xg, then f is continuous at xg.

Since f is defined in a neighborhood of xg, it follows that f is
continuous at xg if and only if limy_,, f(x) = f(xp). This is
equivalent to limy_,, [f(x) — f(x0)] = 0. But

f(x) = f(x)

Jim [£() = F(0)] = fim =25 202~ x0)
:f’(Xo)-OZO. Ol
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Differentiable Functions

Definition

If U is an open set in R that we say that a real-valued function on
U is differentiable if it is differentiable at every point of of U.
Then we obtain a new function, ' : U — R, in the obvious way.

The notation %(x) is also used.

Remark
While a differentiable function is necessarily continuous, a
continuous function need not be differentiable. For example,
consider f(x) = |x|. To see if f'(0) exists, we consider the limit
lim |X| 0 = lim m
x=0 x—0 x—0 X
where you can show does not exist. In fact, there are continuous
functions on R that don't have a derivative at a single point!
However, proving that such functions exist is beyond the scope of
this course.
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Rules To Differentiate With

The following are routine consequences of the definition.

Lemma

If f(x) = c for all x € R, then f'(x) =0 for all x € R. If f(x) = x
for all x € R, then f'(x) =1 for all x € R.

Suppose that f and g are differentiable at xo. Then so are f + g,
fg, and if g(xo) # 0, éé. Futhermore,

o (f =+ g)’(Xo) = f’(Xo) + g/(Xo),

@ (1z)'(x0) = f'(x0)g(x0) + f(x0)8'(x0), and

© (o) - okl
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Proof

(1) This is routine and you should convince yourself of that.

(2) We compute

im [()8(x) — f(x0)g(x0)
X—>X0 X — X0
_ i F()E(x) — F(x0)g(x) + F(x0)e(x) — f(x0)g(x0)
X—+X0 X — X0
= lim f(x) = f(x0) f(XO)g(x)+

X—X0 X — X0

LYOES

= f'(x0)&(x0) + f(x0)&’(x0)

where we used the fact that g is continuous at xp to conclude that
lim,,., g(x) = g(x0).




Proof Continued.

(3) First we consider ﬁ. Since g(xp) # 0 and g is continuous at
xp, we can conclude that g(x) # 0 near xp. Hence we can compute

that
1 1
im B0 809 _ i, _E(0) ~ )
X=X X — Xp X—+Xo (X — xo)g(x)g(Xo)
__ &'(x)
g(x0)*

Now we can use the product rule (aka (2)) to compute

i /) — l "(x) = F(x x _g,(XO)
(g) (o) (f(g)) (o) = £ O)g(xo) + 1) g(x0)?
_ '(x0)&(x0) — f(XO)g'(XO). 0

g(x0)?
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@ That is enough for today.
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