Math 63: Winter 2021 Lecture 17

Dana P. Williams

Dartmouth College

Monday, February 15, 2021

Getting Started

- We should be recording.
- Remember it is better for me if you have your video on so that I don't feel I'm just talking to myself.
- Our midterm will be available Friday after class and due Sunday by 10pm. It will cover through Today's lecture and hence all of Chapter V.
- 4 You will have four hours for the exam plus the usual 30 minutes uploading time. Plan your window now.
- Time for some questions!

Rules To Differentiate With

The following are routine consequences of the definition.

Lemma

If f(x) = c for all $x \in \mathbf{R}$, then f'(x) = 0 for all $x \in \mathbf{R}$. If f(x) = x for all $x \in \mathbf{R}$, then f'(x) = 1 for all $x \in \mathbf{R}$.

$\mathsf{Theorem}$

Suppose that f and g are differentiable at x_0 . Then so are $f\pm g$, fg, and if $g(x_0)\neq 0$, $\frac{f}{g}$. Futhermore,

- ② $(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$, and

More Formulas

Corollary

Suppose that f is differentiable at x_0 and $c \in \mathbf{R}$. Then cf is differentiable at x_0 and $(cf)'(x_0) = cf'(x_0)$.

Corollary

Suppose that $n \in \mathbf{Z}$ and $f(x) = x^n$. Then $f'(x) = nx^{n-1}$.

Remark

We are being a bit sloppy here. It is implict that if n < 0 then f is not defined at 0, and if n = 0, we are just claiming that f' = 0.

Proof.

We have already dealt with the cases that n=0 and n=1. If $n\geq 1$, and we assume $\frac{d}{dx}(x^n)=nx^{n-1}$, then $\frac{d}{dx}(x^{n+1})=\frac{d}{dx}(x\cdot x^n)=x^n+x(nx^{n-1})=(n+1)x^n$ so the result holds for all $n\geq 0$ by induction.

Proof Continued.

If
$$n < 0$$
, then $\frac{d}{dx}(x^n) = \frac{d}{dx}(\frac{1}{x^{-n}}) = -\frac{-nx^{-n-1}}{x^{-2n}} = nx^{n-1}$.

Proposition (The Chain Rule)

Suppose that U and V are open subsets of \mathbf{R} . Let $f:U\to V$ and $g:V\to \mathbf{R}$ be functions such that f is differentiable at $x_0\in U$ and g is differentiable at $f(x_0)\in V$. Then $g\circ f$ is differentiable at x_0 and

$$(g \circ f)'(x_0) = g'(f(x_0))f'(x_0).$$

Proof.

Let
$$A(y) = \begin{cases} \frac{g(y) - g(f(x_0))}{y - f(x_0)} & \text{if } y \in V \text{ and } y \neq f(x_0), \text{ and} \\ g'(f(x_0)) & \text{if } y = f(x_0). \end{cases}$$
. Then

 $\lim_{y\to f(x_0)}A(y)=g'(f(x_0))$. It follows that A is continuous at $f(x_0)$. Therefore $\lim_{x\to x_0}A(f(x))=A(f(x_0))$ since the composition of continuous functions is continuous. Therefore

$$(g \circ f)'(x_0) = \lim_{x \to x_0} \frac{g(f(x)) - g(f(x_0))}{x - x_0}$$
$$= \lim_{x \to x_0} A(f(x)) \frac{f(x) - f(x_0)}{x - x_0}$$
$$= g'(f(x_0))f'(x_0).$$

Extreme Values

Proposition

Suppose that U is open in \mathbf{R} and that $f:U\to\mathbf{R}$ has either a maximum or minimum value at $x_0\in U$. Then either f is not differentiable at x_0 or $f'(x_0)=0$.

Proof.

Assume that $f'(x_0)$ exists. Then

$$g(x) = \begin{cases} \frac{f(x) - f(x_0)}{x - x_0} & \text{if } x \neq x_0, \text{ and} \\ f'(x_0) & \text{if } x = x_0 \end{cases}$$

is continuous at x_0 . Hence if $f'(x_0)>0$, then is a $\delta>0$ such that $0<|x-x_0|<\delta$ implies $g(x)>\frac{f'(x_0)}{2}>0$. But if $f(x_0)$ is either a maximum or a minimum, then $f(x)-f(x_0)$ is either always non-positive or always non-negative. Since $g(x)\neq 0$ if $0<|x-x_0|<\delta$, it follows that $f(x)-f(x_0)$ is always either always positive or always negative. But $x-x_0$ can be both negative or positive. Hence g(x) can't always be positive. Thus $f'(x_0)\leq 0$. But a similar argument implies $f'(x_0)\geq 0$.

Rolle's Theorem

Lemma (Rolle's Theorem)

Suppose a < b in \mathbf{R} , that $f : [a, b] \to \mathbf{R}$ is continuous and differentiable on (a, b). If f(a) = f(b), then there is a $c \in (a, b)$ such that f'(c) = 0.

Proof.

By the Extreme-Value Theorem, f attains its maximum and minimum on [a,b]. If both these values occur at the endpoints a and b, then f is constant and f'(c)=0 for all $c\in(a,b)$. Otherwise, either the maximum or minimum must occur at some $c\in(a,b)$. By the previous proposition, f'(c)=0.

The Mean Value Theorem

Theorem (The Mean Value Theorem)

Suppose that a < b in \mathbf{R} and that $f : [a, b] \to \mathbf{R}$ is continuous and differentiable on (a, b). Then there is a $c \in (a, b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Remark

In my calculus courses, I emphasize that the MVT says that there is always a point where the instantaneous rate of change equals the average rate of change. (Picture)

Proof.

Let $F(x) = f(x) - f(a) - \frac{f(b) - f(a)}{(b-a)}(x-a)$. Then F is continuous on [a,b] and differentiable on (a,b). Since F(b) = F(a) = 0, there is a $c \in (a,b)$ such that F'(c) = 0. The result follows from this.

Corollary

Suppose that $f:(c,d)\to \mathbf{R}$ is differentiable and f'(x)=0 for all $x\in(c,d)$. Then f is constant.

Proof.

It suffices to see that if $a, b \in (c, d)$, then f(a) = f(b). But we may assume a < b, then the MVT implies $f(b) - f(a) = \frac{f(b) - f(a)}{b}(b - a) = f'(c)(b - a) = 0$.

Corollary

If f and g are differentiable real-valued functions on an open interval such that f' = g', then f and g differ by a constant.

Increasing and Decreasing Functions

Definition

A real-valued function on a set $U \subset \mathbf{R}$ is called increasing (strictly increasing) if a < b in U implies $f(a) \leq f(b)$ (f(a) < f(b)). On the other hand, f is called decreasing (strictly decreasing) if a < b in U implies $f(a) \geq f(b)$ (f(a) > f(b)).

Proposition

Suppose that a real-valued function on an open interval is such that f'(x) > 0 for all x in the interval. Then f is strictly increasing on that interval.

Proof.

Suppose that a < b in the interval. Then $f(b) - f(a) = \frac{f(b) - f(a)}{b - a}(b - a) = f'(c)(b - a) > 0$.

Break Time

Time for a break and some questions.

Higher Order Derivatives

Remark

If f is a real-valued function which is differentiable on an open set $U \subset \mathbf{R}$, then we can consider the function $f': U \to \mathbf{R}$. If f' is differentiable, then we say that f is twice differentiable and variously write f'' or $f^{(2)}$ for the second derivative (f')'. Of course, we can continue the madness and consider higher order derivatives $f''' = f^{(3)}$, and so on—if the derivatives exist. If f is n-times differentiable, we also write $\frac{d^n f}{dx^n}$ for $f^{(n)}$. To make some formulas work, we agree that $f^{(0)} = f$ (the 0^{th} -derivative).

Notation

We will also employ the factorial notation: 0! := 1 and (n+1)! = (n+1)n! for $n \ge 1$. Or less pedantically, $n! = 1 \cdot 2 \cdots n$.

A Lemma

It will be convenient to establish the following technical result.

Lemma

Suppose that $f: U \to \mathbf{R}$ is (n+1)-times differentiable. If $b \in U$, define a function on $R_n(b,\cdot): U \to \mathbf{R}$ by

$$f(b) = f(x) + f'(x)(b-x) + \frac{f''(x)}{2!}(b-x)^{2} + \cdots + \frac{f^{(n)}(x)}{n!}(b-x)^{n} + R_{n}(b,x).$$

Then

$$\frac{d}{dx}R_n(b,x)=-\frac{f^{(n+1)}(x)}{n!}(b-x)^n.$$

Proof Continued.

Without the unusual structure, we have

$$R_n(b,x) = f(b) - f(x) - \sum_{i=1}^n f^{(i)}(x) \frac{(b-x)^j}{j!}.$$

Therefore $R_n(b,\cdot)$ is differentiable and using the product and chain rules, we have

$$\frac{d}{dx}R_n(b,x) = -f'(x) + \sum_{j=1}^n \left[f^j(x) \frac{(b-x)^{j-1}}{(j-1)!} - f^{(j+1)}(x) \frac{(b-x)^j}{j!} \right]$$

which telescopes to

$$=-f^{(n+1)}(x)\frac{(b-x)^n}{n!}.$$

Taylor's Theorem

Theorem (Taylor's Theorem)

Suppose that $U \subset \mathbf{R}$ is open and that $f: U \to \mathbf{R}$ is (n+1)-times differentiable on U. Then for any $a, b \in U$, we have

$$f(b) = f(a) + f'(a)(b-a) + \frac{f''(a)}{2!}(b-a)^{2} + \cdots$$
$$\cdots + \frac{f^{(n)}(a)}{n!}(b-a)^{n} + \frac{f^{(n+1)}(c)}{(n+1)!}(b-a)^{n+1}$$

where c lies between a and b. (In the degenerate case a = b, we can let c = a.)

Remark

In the case n = 0, this reduces to a milder form of the Mean Value Theorem.

Proof.

If a=b, the result is trivial. The awkward statement of the last lemma is so that we can see that we just need to show that, in the notation of that lemma,

$$R_n(a,b) = \frac{f^{(n+1)}(c)}{(n+1)!}(b-a)^{n+1}$$

for some c between a and b. Since $a \neq b$, there is a real number K such that

$$R_n(a,b) = K \frac{(b-a)^{n+1}}{(n+1)!}.$$

Proof Continued.

Define $\varphi: U \to \mathbf{R}$ by

$$\varphi(x) = R_n(b,x) - K \frac{(b-x)^{n+1}}{(n+1)!}.$$

Clearly φ is differentiable on U and $\varphi(a)=\varphi(b)=0$. Therefore φ restricted to the interval [a,b] if a< b or [b,a] if b< a satisfies the hypotheses of Rolle's Theorem. Thus there is a c between a and b such that $\varphi'(c)=0$. But by our lemma,

$$\varphi'(x) = -\frac{f^{(n+1)}(x)}{n!}(b-a)^n + K\frac{(b-x)^n}{n!}.$$

Thus $K = f^{(n+1)}(c)$ and $R_n(a,b) = \frac{f^{(n+1)}(c)}{(n+1)!}(b-a)^{n+1}$ as claimed.

An Interpretation

Remark

Suppose that $f:U\to \mathbf{R}$ is (n+1)-times differentiable on an open set U. If $a\in U$, let

$$P_n(a,x) = f(a) + f'(a)(x-a) + \cdots + \frac{f^{(n)}(a)}{n!}(x-a)^n.$$

We call $P_n(a,x)$ the n^{th} -degree Taylor polynomial for f about x=a. Note that $P_1(a,x)$ is just the linear approximation to f(x) near a given by the derivative. That is $P_1(a,x)$ is the unique polynomial such that $P_1(a,a)=f(a)$ and $P_1'(a,a)=f'(a)$. It is not so hard to check that $P_n(a,x)$ is the unique polynomial of degree at most n such that $P_n^{(k)}(a,a)=f^{(k)}(a)$ for all $0 \le k \le n$. Then $f(x)=P_n(a,x)+R_n(a,x)$ and $R_n(a,x)$ is just the difference $f(x)-P_n(a,x)$. Thus $|R_n(a,x)|$ is just the error in approximating f(x) with $P_n(a,x)$.

Example

Example

Let $f(x)=\frac{1}{x}$ and let a=1. Then $f^{(n)}(x)=(-1)^n\frac{n!}{x^{n+1}}$. Thus $\frac{f^{(j)}(1)}{j!}=(-1)^j$ and the Taylor polynomial of degree n about x=1 is

$$P_n(1,x) = 1 - (x-1) + (x-1)^2 - \dots + (-1)^n (x-1)^n.$$

It is fun to use Mathematica to draw some pictures. Note that if $x \in [1, b]$, then

$$|R_n(1,x)| = \left|\frac{(x-1)^{n+1}}{c^{n+2}}\right| \le |b-1|^{n+1}$$

since $c \in (1, b)$.

Enough

1 That is enough for today.