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Getting Started

1 We should be recording.

2 The final will be administered in a manner similar to the prelim
and midterm exams and will be available from Saturday,
March 13, at 8am EST, to Monday, March 15 at 10pm EST.

3 Time for some questions!
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Review

Theorem

Suppose that
∑∞

n=0 cn(x − a)n is a power series. Then exactly one
the following three cases applies.

1 The series converges absolutely for all x ∈ R.

2 There is a R > 0 such that the series converges absolutely if
|x − a| < R and diverges if |x − a| > R.

3 The series converges only if x = a.

Furthermore, if R1 is such that 0 < R1 < R in case (2) or for any
R ′ > 0 in case (1), the convergence is uniform on
{ x : |x − a| ≤ R1 }.
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Review

Theorem

Suppose that
∑∞

n=0 cn(x − a)n has radius of convergence
R ∈ (0,∞] and we define

f (x) =
∞∑
n=0

cn(x − a)n for all x ∈ (a− R, a + R).

Then f is differentiable on (a− R, a + R) and for all
x ∈ (a− R, a + R)

f ′(x) =
∞∑
n=1

ncn(x−a)n−1 and

∫ x

a
f (t) dt =

∞∑
n=0

cn
n + 1

(x−a)n+1.

Remark

It should be clear that if R =∞, then (a− R, a + R) is meant to
be interpreted as (−∞,∞) = R.
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Review

Corollary

Suppose that f (x) =
∑∞

n=0 cn(x − a)n has radius of convergence
R > 0. (That is, R ∈ (0,∞].) Then f has derivatives of all orders
on (a− R, a + R) and for all n ≥ 0

cn =
f (n)(a)

n!
.

In particular, the power series expansion for f about a is unique.
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Smooth Functions

Question

Now suppose that f has derivatives of all orders on an interval
U ⊂ R with a ∈ U. Then we can form the power series

∞∑
n=0

f (n)(a)

n!
(x − a)n = f (a) + f ′(a)(x − a) +

f ′′(a)

2!
(x − a)2 + · · · .

Let’s suppose the series has a positive radius of convergence R and
defines a function g on (a− R, a + R). The obvious question is
whether g = f !.
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Question

Question (Question Continued)

But we know that

f (x) =
n∑

k=0

f (k)(a)

k!
(x − a)k + Rn(x , a)

where

Rn(x , a) =
f (n+1)(c)

(n + 1)!
(x − a)n+1

with c between x and a. Therefore we recover f (x) exactly when
limn Rn(x , a) = 0.
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Example

Example

Let f (x) = log(1 + x). Then f ′(x) = 1
1+x , f ′′(x) = − 2

(1+x)2
, . . . .

In general,

f (n)(x) = −(1)n−1
(n − 1)!

(1 + x)n
for n ≥ 1 and x > −1.

Thus f (n)(0) = (−1)n−1(n − 1)! and the series for f about x = 0
must be of the form

x − x2

2
+

x3

3
− · · · =

∞∑
n=1

(−1)n−1
xn

n
.

We want to know when this converges to log(1 + x). Note that

Rn(x , 0) =
f (n+1)(c)

(n + 1)!
xn+1 =

1

n + 1

( x

1 + c

)n+1

for some c between 0 and x .
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Example

Example (Continued)

If x ≥ 0, then we have

|Rn(x , 0)| ≤ 1

n + 1
xn+1.

Then limn |Rn(x , 0)| = 0 if 0 ≤ x < 1. On the other hand, if
−1 < x ≤ 0, then

|Rn(x , 0)| ≤ 1

n + 1

( |x |
1− |x |

)n+1
.

Then we can show that limn |Rn(x , 0)| = 0 only when −1
2 < x ≤ 0.

This shows that the series converges to f (x) = log(1 + x) only
when x ∈ (−1

2 , 1). This seems wrong since the series converges if
|x | < 1.
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Example

Example (Improved)

If |x | < 1, then we can sum the a geometric series to get

1

1 + x
=
∞∑
n=0

(−x)n = 1− x + x2 − x3 + · · · .

Then we can integrate term-by-term to get

log(1 + x) =

∫ x

0

1

1 + t
dt = x − x2

2
+

x3

3
− x4

4
+ · · · ,

which is valid for all |x | < 1.

This is obviously superior to repeated differentiation and
estimating the error term.

Dana P. Williams Math 63: Winter 2021 Lecture 25



Break Time

Time for a break and some questions.
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Another Question

Question

Before the break, we established that

log(1 + x) = x − x2

2
+

x3

3
− x4

4
+ · · · for all |x | < 1.

But both sides make sense if x = 1. Is it the case that

log(2) = 1− 1

2
+

1

3
− 1

4
+ · · ·?

As we shall show, the answer is “yes”. But it should be observed
that the convergence is very slow—remember the error
|sn − log(2)| is only bounded by 1

n+1 which doesn’t get small very
fast. But it is a pretty formula.
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Abel’s Theorem

Theorem (Abel’s Theorem)

Suppose that
∑∞

n=1 an is a convergent series of real numbers. Then

f (x) =
∞∑
n=1

anx
n

is uniformly convergent on [0, 1] and f is continuous on [0, 1]. In
particular,

∞∑
n=1

an = f (1) = lim
x↗1

f (x).

Remark

This answers our question. In our case f (x) and log(1 + x) are
equal on [0, 1). Since both are continuous, they must be equal at
x = 1 as well.
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Proof

Proof.

It suffices to see that
∑∞

n=1 anx
n is uniformly convergent on [0, 1].

Then the sum is clearly continuous and the rest is routine.

Given ε > 0, there is a N ∈ N such that m > n ≥ N implies
|an+1 + · · ·+ am| < ε. Using our Cauchy Criterion, it will suffice to
prove that ∣∣∣ m∑

k=n+1

akx
k
∣∣∣ < ε for all x ∈ [0, 1].

Note that the sequence (ak)∞k=n+1 has partial sums
sr = an+1 + · · ·+ an+r bounded by ε.
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Proof

Proof Continued.

By our Summation by Parts formula,

∣∣∣ m∑
k=n+1

akx
k
∣∣∣ =

∣∣∣sm−nxm +
m−1∑

k=n+1

sk−n(xk − xk+1)
∣∣∣.

Since 0 ≤ x ≤ 1, xk ≥ xk+1, we have

∣∣∣ m∑
k=n+1

akx
k
∣∣∣ ≤ |sm−n|xm +

m−1∑
k=n+1

|sk−n|(xk − xk+1)

≤ ε · xm + ε · (xn+1 − xm) = εxn+1 ≤ ε.

This completes the proof.
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Break Time

Time for a break and some questions.
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Another Example

Example (Cheating Again)

We can define a smooth function F : R→ R by

F (x) =

∫ x

0

1

1 + t2
dt.

To feel impressed with ourselves, we can remember that
F (x) = arctan(x), but we won’t use any properties of arctan until
the very end and then only to show off a bit. We’d like to express
arctan as the sum of a power series about x = 0. Repeated
differentiation is not going to be helpful let alone trying to
estimate Rn(x , 0). But we are far from lost.
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Example

Example (Continued)

Since 1
1+x = 1− x + x2 − x3 + · · · for all |x | < 1, we also have

1

1 + x2
= 1− x2 + x4 − x6 + · · · for all |x | < 1.

Therefore we can integrate term-by-term to get

arctan(x) = x − x3

3
+

x5

5
− x7

7
+ · · · for all |x | < 1.

Question

If F (x) = arctan(x), what is F (2020)(0)? How about F (2021)(0)?

Dana P. Williams Math 63: Winter 2021 Lecture 25



Answer

Remark (The Answer)

Since we have F (x) =
∑∞

n=0 cnx
n for |x | < 1, we must have

cn =
F (n)(0)

n!
.

Since c2k = 0 for k ≥ 0, we must have F (2020)(0) = 0. However,
c2k+1 = (−1)k 1

2k+1 . Since 2021 = 2(1010) + 1,

F (2021)(0) = (2021)! · (−1)1010

2021
= (2020)!.

Remark

We can also use Abel’s Theorem to conclude that

π

4
= arctan(1) = 1− 1

3
+

1

5
− 1

7
+ · · · .
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Some Oddities

Remark

Now I want to display some extreme examples. I will just sketch
the proofs since filling in all the details would be painful and the
point is just to be aware of what’s out there.

Lemma

For all n = { 0, 1, 2, . . . }, we have

lim
x→0

1

xn
e−

1
x2 = 0.

Remark

In the good old days, we would argue that this is equivalent to the
assertion that limx→∞ xne−x

2
= 0 and use L’Hospital’s rule, but

I’d rather sketch a “Math 63 Proof”.
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Proof

Sketch of the Proof.

I leave it to you to show that log(x) ≤ x for all x > 0. Then

0 ≤
∣∣∣ 1

xn
e−

1
x2

∣∣∣ = exp
[
− 1

x2
+ n log

(1

x

)]
≤ exp

[
−1

x
(

1

x
− n)

]
.

But by considering limx↗0 and limx↘0 separately, it is not hard to
see that

lim
x→0

exp
[
−1

x
(

1

x
− n)

]
= 0.

This suffices.
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A Function

Proposition (Chapter VI #26)

Define f : R→ R by

f (x) =

{
e−

1
x2 if x 6= 0, and

0 if x = 0.

Then f has derivatives of all orders at x = 0 and f (n)(0) = 0 for all
n = { 0, 1, 2, . . . }.

Remark

Note that by the chain rule, f is obviously smooth on R \ {0}.
Only x = 0 is interesting.
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Proof

Sketch of the Proof.

Note that

f ′(0) = lim
x→0

f (x)− f (0)

x − 0
= lim

x→0

1

x
e−

1
x2 = 0

by our limit lemma. Now the game is proceed by induction. For
this we need another lemma.
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A Lemma

Lemma

If n ∈ N and x 6= 0, then f (n)(x) = P( 1
x )e−

1
x2 were P ∈ R[x ] is a

polynomial.

Proof of the Lemma.

This is easy if n = 1. On the other hand, if f (n)(x) = P( 1
x )e−

1
x2 ,

then

f (n+1)(x) = P ′( 1
x )(−1

x2
)e−

1
x2 + P( 1

x )( 2
x3

)e−
1
x2

=
[
P ′( 1

x )(−1
x2

) + P( 1
x )( 2

x3
)︸ ︷︷ ︸

Q( 1
x
)

]
e−

1
x2

where Q is a polynomial.
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Proof

Proof of the Proposition Continued.

In view of the lemma, we can assume that

f (n)(x) =

{
P( 1

x )e−
1
x2 if x 6= 0, and

0 if x = 0

for some polynomial P. But then

f (n+1)(0) = lim
x→0

f (n)(x)− f (0)(0)

x − 0

= lim
x→0

1

x
· P(

1

x
)e−

1
x2

which is equal to zero since limx→0
1
xn e
− 1

x2 = 0 for all n.
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Why Now

Example

Let f be our smooth example where f (n)(0) = 0 for all n ≥ 0. If
we could expand f into a power series about x = 0, we would have

f (x) =
∞∑
n=0

f (n)(0)

n!
xn = 0

Thus the only possible power series expression for f converges to f
only at x = 0.
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Just so that You Know

Example

Let’s suppose that we believe that

f (x) =

∫ ∞
0

e−t cos(t2x) dt = lim
n→∞

∫ n

0
e−t cos(t2x) dt

defines a smooth function and that the derivative can be computed
by “differentiating” under the integral sign. For example,

f ′(x) = −
∫ ∞
0

e−tt2 sin(t2x) dx .

Give that, using integration by parts, it is not so hard to verify that

f (2n)(0) =

∫ ∞
0

e−tt4n dt = ±(4n)!.

But then the (2n)th term of the power series expansion for f is

± (4n)!
(2n)!x

2n and these terms tends to zero with n only when x = 0.
Therefore the power series expansion for this f converges only at
x = 0.
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Enough

1 That is enough for today.
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