Exercises for Final Exam

These exercises constitute the take-home final exam in Math 68.

- Solutions are due by the end of the day on Friday, December 11th.
- But, please note that I will be out of town from Wednesday, December 9th until Friday, December 11th and therefore unable to offer any assistance.
- You may consult reference books and the interwebs, but please do not copy answers from these sources.
- This exam is untimed.
- Your solutions to this exam will be graded on a finer scale than regular homework problems, more like your solutions to the midterm exam were graded.
- Therefore, please make sure that the steps in your solutions are explained.

1. Find an explicit formula for a_{n} if

$$
a_{n+2}=5 a_{n+1}-6 a_{n}+2 n-1
$$

for $n \geqslant 0$ with initial conditions $a_{0}=0$ and $a_{1}=1$. Note: here and in other problems, you are allowed to use a computer algebra program, providing that you also turn in its output.
2. Count unlabeled graphs on 5 vertices by their number of edges using Póyla's Theorem (like we did in Lecture 25). Include a chart describing the action of S_{5} on edges.
3. Calculate the number of spanning trees of the 6×6 torus graph G. The vertices of this graph are ordered pairs in $\mathbb{Z}_{6} \times \mathbb{Z}_{6}$, where (i, j) is connected to $(i, j-1),(i, j+1),(i-1, j)$, and $(i+1, j), \bmod$ 6.
4. Find an explicit formula for the number of trees on n labeled nodes with exactly 4 leaves. Hint: The answer involves Stirling numbers, although there may be other ways to do the problem. Second hint: You may want to investigate Prüfer codes.
5. Consider expanding the product

$$
\prod_{1 \leqslant i<j \leqslant n}\left(x_{i}+x_{j}\right)
$$

into monomials. Prove that the number of monomials in this expansion equals the number of forests on n labelled vertices. For example there are 2 forests on 2 labeled vertices, which correspond to the monomials x_{1} and x_{2}, while there are 7 forests on 3 labeled vertices, corresponding to the 7 terms of the expansion of $\left(x_{1}+x_{2}\right)\left(x_{1}+x_{3}\right)\left(x_{2}+x_{3}\right)$:
$x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{1}^{2} x_{3}+x_{1} x_{3}^{2}+x_{2}^{2} x_{3}+x_{2} x_{3}^{2}+2 x_{1} x_{2} x_{3}$.

