Exercises for Week 2

Solutions to these problems are due on Wednesday, October 7.

1. Find a formula (in closed form) for $S(n, n-3)$ for all $n \geqslant 3$.
2. Without using asymptotics for $p(n)$, prove that $p(n)$ grows faster than any polynomial. That is, if $f(n)$ is any polynomial, prove that there is some integer N such that $p(n)>f(n)$ for all $n>N$.
3. Let $B_{k}(n)$ denote the number of (set) partitions of $[n]$ such that if i and j are in the same block, then $|i-j|>k$. Prove that $B_{k}(n)=B(n-k)$ for all $n \geqslant k$.
4. Define a family of polynomials by

$$
P_{n}(x)=\sum_{k=0}^{n} S(n, k) x^{k},
$$

where $S(n, k)$ are the Stirling numbers of the second kind. Use the recurrence $S(n, k)=S(n-1, k-$

1) $+k S(n-1, k)$ to prove that

$$
P_{n}(x)=x\left(\frac{d}{d x} P_{n-1}(x)+P_{n-1}(x)\right)
$$

5. Define the functions $Q_{n}(x)$ by $Q_{n}(x)=e^{x} P_{n}(x)$. Prove that the roots of $Q_{n}(x)$ are the same as the roots of $P_{n}(x)$ and that

$$
Q_{n}(x)=x \frac{d}{d x} Q_{n-1}(x) .
$$

6. Give an inductive proof using the previous two problems that all roots of $P_{n}(x)$ are real. Conclude that the Stirling numbers of the second kind are logconcave.
7. Prove that in the polynomial

$$
(1+x)(1+2 x) \cdots(1+(n-1) x)
$$

the coefficient of x^{n-k} is $c(n, k)$.

