Exercises for Week 4

Solutions to these problems are due on Wednesday, October 21.

1. Compute

$$
\mu(13 / 2 / 45 / 68 / 7,13457 / 268)
$$

in the set partition lattice Π_{8}.
2. Let P be a poset with a minimum element $\hat{0}$, and suppose that the element $x \in P$ covers only one other element, y. Prove that if $y \neq \hat{0}$, then $\mu(\hat{0}, x)=0$.
3. Define the function $f(n)$ by

$$
\sum_{d \mid n} f(d)=\log n .
$$

Prove that

$$
f(n)= \begin{cases}\log p & \text { if } n \text { is a power of the prime } p \\ 0 & \text { otherwise }\end{cases}
$$

Exercises 4-6 concern the symmetric chain decomposition for ($2^{[n]}, \subseteq$) constructed by Greene and Kleitman. Recall that to find the successor of $A \subseteq$ [n] in this SCD, we write out its characteristic vector, match 0 s and 1 s from left to right, and then take $A \cup\{k\}$ if k is the leftmost unmatched 0 , or stop if there are no unmatched 0s. For example, to compute the successor of

$$
A=\{3,4,6,7,8\} \subseteq[9],
$$

we have

$$
\chi(A)=001101110
$$

so matching the 0 s and 1 s , we have

Thus the successor of A is $\sigma(A)=A \cup\{9\}$. Given a set A, let $U_{0}(A)$ denote the elements of $[n]$ which correspond to unmatched 0 s , and $U_{1}(A)$ denote the elements of $[n]$ which correspond to unmatched 1 s .
4. Prove that for any $A \subseteq[n]$, the rightmost unmatched 1 lies to the left of the leftmost unmatched 0.
5. Take $A \subseteq[n]$, and suppose that

$$
\begin{aligned}
U_{1}(A) & =\left\{i_{1}, i_{2}, \ldots, i_{j}\right\} \\
U_{0}(A) & =\left\{i_{j+1}, i_{j+2}, \ldots, i_{t}\right\}
\end{aligned}
$$

where $i_{1}<i_{2}<\cdots<i_{t}$. Prove that if $U_{0}(A) \neq \varnothing$ then

$$
\begin{aligned}
U_{1}(\sigma(A)) & =\left\{i_{1}, i_{2}, \ldots, i_{j+1}\right\} \\
U_{0}(\sigma(A)) & =\left\{i_{j+2}, i_{j+3}, \ldots, i_{t}\right\}
\end{aligned}
$$

6. Prove that this construction gives an SCD of $\left(2^{[n]}, \subseteq\right)$ by showing that if $A \subseteq[n]$ with $U_{1}(A)=$ \varnothing then

$$
C: A \subset \sigma(A) \subset \sigma^{2}(A) \subset \cdots \subset \sigma^{\left|U_{0}(A)\right|}(A)
$$

is a symmetric chain beginning at A and ending at $A \cup U_{0}(A)$.

